Long non-coding RNA (lncRNA) is a non-coding RNA longer than 200 nucleotides, crucial for functions like cell cycle regulation and gene transcription. Accurate localization prediction from sequence information is vital for understanding lncRNA's biological roles. Computational methods offer an effective alternative to traditional experimental methods for annotating lncRNA subcellular positions. Existing machine learning-based methods are limited and often overlook regions with coding potential that affect the function of lncRNA. Therefore, we propose a new model called LncSL. For feature encoding, both lncRNA sequences and amino acid sequences from open reading frames (ORFs) are employed. And we selected the most suitable features by CatBoost and integrated them into a new feature set. Additionally, a voting process with seven feature selection algorithms identified the higher contributive features for training our final stacked model. Additionally, an automatic model selection strategy is constructed to find a better performance meta-model for assembling LncSL. This study specifically focuses on predicting the subcellular localization of lncRNA in the nucleus and cytoplasm. On two benchmark datasets called S1 and S2 datasets, LncSL outperformed existing methods by 6.3% to 12.3% in the Matthew's correlation coefficient on a balanced test dataset. On an unbalanced independent test dataset sourced from S1, LncSL improved by 4.7% to 18.6% in the Matthew's correlation coefficient, which further demonstrates that LncSL is superior to other compared methods. In all, this study presents an effective method for predicting lncRNA subcellular localization through enhancing sequence information, which is always overlooked by traditional methods, and addressing contributive meta-model selection problems, which can offer new insights for other bioinformatics problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678684 | PMC |
http://dx.doi.org/10.3390/ijms252413734 | DOI Listing |
Plant Commun
January 2025
Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. Electronic address:
Steroidal saponins in Paris polyphylla featuring complicated sugar chains exhibit notable biological activities, but the sugar chain biosynthesis is still not fully understood. Here, we identified a 4'-O-rhamnosyltransferase (UGT73DY2) from P. polyphylla, which catalyzes the 4'-O-rhamnosylation of polyphyllins V and VI, producing dioscin and pennogenin 3-O-β-chacotrioside, respectively.
View Article and Find Full Text PDFBiochimie
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. Electronic address:
Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China. Electronic address:
During viral infection, RIG-I-like receptors (RLRs) are cytoplasmic pattern recognition receptors that recognize and bind to viral RNA components, initiating the transcription of interferon-related genes, inflammatory cytokines and other factors, thereby triggering the cellular production of an antiviral innate immune response. The protein inhibitor of activated signal transducer and activator of transcription (STAT) (PIAS) protein family has become a hot research topic due to its extensive involvement in the regulation of cytokines, inflammatory factors and innate immune signaling pathways. In the present study, we investigated the role of fish PIASy in Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) infections.
View Article and Find Full Text PDFDiscov Nano
January 2025
Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.
View Article and Find Full Text PDFFEBS J
January 2025
Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany.
Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the G- and G-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!