After reporting the first known clinical case associating compound heterozygous single-nucleotide variants in Exon 2 of to aortic aneurysmal and iliac dissection, we began prospective surveillance in our vascular genetic practice for similar cases. Herein, we present nine (9) subjects from a total cohort of 135 with arterial aneurysms or dissections who revealed single-nucleotide variants in with no other alterations in a panel of 35 genes associated with aneurysmal and dissection disorders. Five out of nine (5/9) single-nucleotide variants were in Exon 1, and four out of nine (4/9) mutations were in Exon 2, both of which are principal coding exons for this gene. Eight out of nine (8/9) were ACMG variants of unknown significance (VUSs), and one out of nine (1/9) was an ACMG pathogenic mutation previously associated to brittle cornea syndrome (BCS). Of our nine subjects, four (44.4%) experienced clinically significant vascular dissection, and four (44.4%) had a family history of one or more first-degree relatives with aneurysmal or dissection diseases. This novel genetic case series significantly strengthens our initial discovery of potential association with arterial aneurysmal/dissection diseases through the study of this cohort of unrelated patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678303PMC
http://dx.doi.org/10.3390/ijms252413730DOI Listing

Publication Analysis

Top Keywords

single-nucleotide variants
16
aneurysmal dissection
12
coding exons
8
exons gene
8
dissection diseases
8
variants exon
8
variants
5
dissection
5
phenotype-to-genotype association
4
association novel
4

Similar Publications

Identification of genetic variants of the gene in association with COPD susceptibility.

Ann Med

December 2025

Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.

Background: Although existing studies have identified some genetic loci associated with chronic obstructive pulmonary disease (COPD) susceptibility, many variants remain to be discovered. The aim of this study was to further explore the potential relationship between single nucleotide polymorphisms (SNPs) and COPD risk.

Methods: Nine hundred and ninety-six subjects were recruited (498 COPD cases and 498 healthy controls).

View Article and Find Full Text PDF

Background: Several studies suggested the genetic association between IL10RA variants and susceptibility to Behcet's disease (BD). However, the precise mechanism of the association is still unknown. The purpose of this study was to investigate the mechanism underlying the genetic associations between IL10RA polymorphisms and the risk of BD.

View Article and Find Full Text PDF

Goats typically have double coats, with the outermost coarse hairs providing protection against mechanical and radiation damage. While much attention has been paid to cashmere due to its status as a high-end textile material, there is limited information available on coarse hair. This study aimed to identify genomic variants, such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels), associated with coarse hair diameter using a genome-wide association study (GWAS).

View Article and Find Full Text PDF

CRP is a biomarker of acute inflammation linked to metabolic complications. Given the rising prevalence of these conditions in India, we investigated the genetic basis of CRP levels in Indian adolescents, an underrepresented group in genetic studies, to identify early markers of metabolic risk. We performed a two-phased genome-wide association study (GWAS; N = 5052) and an independent Exome-wide association study (ExWAS; N = 4547), to identify both common and rare genetic variants associated with CRP levels.

View Article and Find Full Text PDF

Leveraging a phased pangenome for haplotype design of hybrid potato.

Nature

January 2025

National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

The tetraploid genome and clonal propagation of the cultivated potato (Solanum tuberosum L.) dictate a slow, non-accumulative breeding mode of the most important tuber crop. Transitioning potato breeding to a seed-propagated hybrid system based on diploid inbred lines has the potential to greatly accelerate its improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!