mRNA-based vaccines against the COVID-19 pandemic have propelled the use of nucleic acids for drug delivery. Conventional lipid-based carriers, such as liposomes and nanolipogels, effectively encapsulate and deliver RNA but are hindered by issues such as premature burst release and immunogenicity. To address these challenges, cell membrane-coated nanoparticles offer a promising alternative. We developed a novel nanoparticle system using chitosan methacrylate-tripolyphosphate (CMATPP), which capitalizes on interactions involving membrane proteins at biointerfaces. Ionic crosslinking between chitosan methacrylate and tripolyphosphate facilitates the formation of nanoparticles amenable to coating with red blood cell (RBC) membranes, extracellular vesicles (EVs), and cell-derived nanovesicles (CDNs). Coating CMATPP nanoparticles with RBC membranes effectively mitigated the initial burst release of encapsulated small interfering RNA (siRNA), sustaining controlled release while preserving membrane proteins. This concept was extended to EVs, where CMATPP nanoparticles and CDNs were incorporated into a microfluidic device and subjected to electroporation to create hybrid CDN-CMATPP nanoparticles. Our findings demonstrate that CMATPP nanoparticles are a robust siRNA delivery system with suppressed burst release and enhanced membrane properties conferred by cell or vesicle membranes. Furthermore, the adaptation of the CDN-CMATPP nanoparticle formation in a microfluidic device suggests its potential for personalized therapies using diverse cell sources and increased throughput via automation. This study underscores the versatility and efficacy of CMATPP nanoparticles in RNA delivery, offering a pathway towards advanced therapeutic strategies that utilize biomimetic principles and microfluidic technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678704 | PMC |
http://dx.doi.org/10.3390/ijms252413724 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!