Currently, a large number of novel tick-borne viruses potentially pathogenic to humans are discovered. Studying many of them by classical methods of virology is difficult due to the absence of live viral particles or a sufficient amount of their genetic material. In this case, the use of modern methods of bioinformatics and synthetic and structural biology can help. Haseki tick virus (HSTV) is a recently discovered tick-borne unclassified ssRNA(+) virus. HSTV-positive patients experienced fever and an elevated temperature. However, at the moment, there is no information on the tertiary structure and functions of its proteins. In this work, we used AlphaFold 3 and other bioinformatic tools for the annotation of HSTV nonstructural proteins, based on the principle that the tertiary structure of a protein is inextricably linked with its molecular function. We were the first to obtain models of tertiary structures and describe the putative functions of HSTV nonstructural proteins (NS3 helicase, NS3 protease, NS5 RNA-dependent RNA-polymerase, and NS5 methyltransferase), which play a key role in viral genome replication. Our results may help in further taxonomic identification of HSTV and the development of direct-acting antiviral drugs, POC tests, and vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678601 | PMC |
http://dx.doi.org/10.3390/ijms252413654 | DOI Listing |
Front Immunol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
Influenza A viruses have been a threat to human health for the past 100 years. Understanding the dynamics and pathogenicity of the influenza viruses is of great value in controlling the influenza pandemic. Fluorescent protein-carrying recombinant influenza virus is a substantially useful tool for studying viral characteristics and high-throughput screening .
View Article and Find Full Text PDFVirology
January 2025
Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada. Electronic address:
Chickens are a key species in both the manifestation of avian influenza and the potential for zoonotic transmission. Avian influenza virus (AIV) infection in chickens can range from asymptomatic or mild disease with low pathogenic AIVs (LPAIVs) to systemic fatal disease with high pathogenic AIVs (HPAIVs). During AIV infection in chickens, Toll-like receptor 7 and melanoma differentiation-associated gene 5 are upregulated to detect the single-stranded ribonucleic acid genomes of AIV, triggering a signaling cascade that produces interferons (IFNs) and pro-inflammatory cytokines.
View Article and Find Full Text PDFSci Signal
January 2025
Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
Activation of the stimulator of interferon genes (STING) pathway by cytosolic DNA leads to the activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB). Although many viruses produce proteins that inhibit IRF3-dependent antiviral responses, some viruses produce proteins that inhibit STING-induced NF-κB activation without blocking IRF3 activation. Here, we found that STING-activated, NF-κB-dependent, and IRF3-independent innate immunity inhibited the replication of the DNA virus herpes simplex virus type 1 (HSV-1), the RNA virus coxsackievirus A16 (CV-A16), and the retrovirus HIV-1.
View Article and Find Full Text PDFDengue virus (DENV) remains a significant public health threat in tropical and subtropical regions, with effective antiviral treatments and vaccines still not fully established despite extensive research. A critical aspect of vaccine development for DENV involves selecting proteins from both structural and non-structural regions of the virus to activate humoral and cellular immune responses effectively. In this study, we developed a novel vaccine for dengue virus serotype 2 (DENV2) using a heterologous Prime-Boost strategy that combines an adenoviral vector (Ad) with subunit vaccines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!