Nano-LC with New Hydrophobic Monolith Based on 9-Antracenylmethyl Methacrylate for Biomolecule Separation.

Int J Mol Sci

Department of Chemistry, College of Science, Taif University, Taif P.O. Box 11099, Saudi Arabia.

Published: December 2024

In this study, new monolithic poly(9-anthracenylmethyl methacrylate-co-trimethylolpropane trimethacrylate (TRIM) columns, referred as ANM monoliths were prepared, for the first time, and were used for the separation media for biomolecules and proteomics analysis by nano-liquid chromatography (nano-LC). Monolithic columns were prepared by in situ polymerization of 9-anthracenylmethyl methacrylate (ANM) and trimethylolpropane trimethacrylate (TRIM) in a fused silica capillary column of 100 µm ID. Polymerization solution was optimized in relation to monomer and porogenic solvent. Scanning electron microscopy (SEM) and chromatographic analyses were performed for the characterization studies of ANM monoliths. The ANM monolith produced more than 46.220 plates/m, and the chromatographic evaluation of the optimized ANM monolith was carried out using homologous alkylbenzenes (ABs) and polyaromatic hydrocarbons (PAHs), allowing both strong hydrophobic and π-π interactions. Run-to-run and column-to-column reproducibility values were found as <2.91% and 2.9-3.2%, respectively. The final monolith was used for biomolecule separation, including both three dipeptides, including Alanine-Tyrosine (Ala-Tyr), Glycine-Phenylalanine (Gly-Phe), and L-carnosine and five standard proteins, including ribonuclease A (RNase A), α-chymotrypsinogen (α-chym), lysozyme (Lys), cytochrome C (Cyt C), and myoglobin (Mb) in order to evaluate its potential. Both peptides and proteins were baseline separated using the developed ANM monolith in nano-LC. The ANM monolith was then applied to the protein and peptide profiling of MCF-7 cell line, which allowed a high-resolution analysis of peptides, providing a high peak capacity.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms252413646DOI Listing

Publication Analysis

Top Keywords

trimethacrylate trim
8
anm monoliths
8
anm monolith
8
anm
5
nano-lc hydrophobic
4
hydrophobic monolith
4
monolith based
4
based 9-antracenylmethyl
4
9-antracenylmethyl methacrylate
4
methacrylate biomolecule
4

Similar Publications

Nano-LC with New Hydrophobic Monolith Based on 9-Antracenylmethyl Methacrylate for Biomolecule Separation.

Int J Mol Sci

December 2024

Department of Chemistry, College of Science, Taif University, Taif P.O. Box 11099, Saudi Arabia.

In this study, new monolithic poly(9-anthracenylmethyl methacrylate-co-trimethylolpropane trimethacrylate (TRIM) columns, referred as ANM monoliths were prepared, for the first time, and were used for the separation media for biomolecules and proteomics analysis by nano-liquid chromatography (nano-LC). Monolithic columns were prepared by in situ polymerization of 9-anthracenylmethyl methacrylate (ANM) and trimethylolpropane trimethacrylate (TRIM) in a fused silica capillary column of 100 µm ID. Polymerization solution was optimized in relation to monomer and porogenic solvent.

View Article and Find Full Text PDF

Porous polymeric microspheres are among the most effective adsorbents. They can be synthesized from numerous monomers using different kinds of polymerization techniques with a broad selection of synthesis factors. The main goal of this study was to prepare copolymeric microspheres and establish the relationship between copolymerization parameters and the porosity and thermal stability of the newly synthesized materials.

View Article and Find Full Text PDF

Removal of polyphenols from anthocyanin-rich extracts using 4-vinylpyridine crosslinked copolymers.

Food Chem

January 2025

Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland. Electronic address:

In this work, new sorbents for the purification of anthocyanin-rich extracts were evaluated. Copolymers of 4-vinylpyridine crosslinked with trimethylolpropane trimethacrylate (poly(4VP-co-TRIM)) or 1,4-dimethacryloyloxybenzene (poly(4VP-co-14DMB)) were tested for their potential to capture polyphenols. Copolymers were obtained by seed swelling polymerization in the form of microspheres with permanent porous structure - attractive features of sorbents used for sample purification by dispersive solid phase extraction.

View Article and Find Full Text PDF

4-Vinylpyridine copolymers for improved LC-MS tryptophan and kynurenine determination in human serum.

Sci Rep

August 2024

Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, the John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland.

Article Synopsis
  • Tryptophan and its metabolite kynurenine are important for various biological processes, sparking interest in their detection methods in biological samples.
  • This study highlights the effectiveness of two specially designed polymers for cleaning human serum, specifically poly(4VP-co-TRIM), which effectively reduces interference during the measurement of tryptophan and kynurenine using liquid chromatography-mass spectrometry (LC-MS).
  • Results showed that poly(4VP-co-TRIM) achieved good recovery rates (76% for tryptophan and 87% for kynurenine) and outperformed some common commercially available sorbents in minimizing matrix effects.
View Article and Find Full Text PDF

Synthesis and characterization of magnetic molecularly imprinted polymers for the rapid and selective determination of clofazimine in blood plasma samples.

Heliyon

July 2024

Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang, 45363, Indonesia.

Clofazimine (CLF) is a riminophenazine derivative and a new therapeutic option with high efficacy for patients with rifampicin-resistant tuberculosis (TB). The blood levels of CLF are low and suboptimal, so therapeutic drug monitoring is required. Prior to this study, there were no molecular imprinting-based solid phase extraction (SPE) sorbents that could be used to determine the blood CLF levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!