Pitfalls of Using ANS Dye Under Molecular Crowding Conditions.

Int J Mol Sci

Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia.

Published: December 2024

The 1-anilino-8-naphthalenesulfonate (ANS) fluorescent dye is widely used in protein folding studies due to the significant increase in its fluorescence quantum yield upon binding to protein hydrophobic regions that become accessible during protein unfolding. However, when modeling cellular macromolecular crowding conditions in protein folding experiments in vitro using crowding agents with guanidine hydrochloride (GdnHCl) as the denaturant, the observed changes in ANS spectral characteristics require careful consideration. This study demonstrates that crowding agents can form clusters that interact differently with ANS. Furthermore, GdnHCl can disrupt these clusters and directly affect the ANS spectral characteristics. A model for the interaction between GdnHCl, crowders, and ANS is proposed. Using bovine serum albumin (BSA) as a model protein, the limitations of using ANS for studying conformational transitions induced by GdnHCl in the presence of crowding agents are demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms252413600DOI Listing

Publication Analysis

Top Keywords

crowding agents
12
crowding conditions
8
protein folding
8
ans spectral
8
spectral characteristics
8
ans
6
crowding
5
protein
5
pitfalls ans
4
ans dye
4

Similar Publications

Pitfalls of Using ANS Dye Under Molecular Crowding Conditions.

Int J Mol Sci

December 2024

Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia.

The 1-anilino-8-naphthalenesulfonate (ANS) fluorescent dye is widely used in protein folding studies due to the significant increase in its fluorescence quantum yield upon binding to protein hydrophobic regions that become accessible during protein unfolding. However, when modeling cellular macromolecular crowding conditions in protein folding experiments in vitro using crowding agents with guanidine hydrochloride (GdnHCl) as the denaturant, the observed changes in ANS spectral characteristics require careful consideration. This study demonstrates that crowding agents can form clusters that interact differently with ANS.

View Article and Find Full Text PDF

Polarised crowd in motion: insights into statistical and dynamical behavior.

Sci Rep

December 2024

Department of Physics, IIT(BHU), Varanasi, 221005, U.P., India.

The collection of active agents often exhibits intriguing statistical and dynamical properties, particularly when considering human crowds. In this study, we have developed a computational model to simulate the recent experiment on real marathon races by Bain et al. (Science 363:46-49, 2019).

View Article and Find Full Text PDF

Molecular Crowding Suppresses Mechanical Stress-Driven DNA Strand Separation.

bioRxiv

December 2024

Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.

Molecular crowding influences DNA mechanics and DNA - protein interactions and is ubiquitous in living cells. Quantifying the effects of molecular crowding on DNA supercoiling is essential to relating experiments to DNA supercoiling. We use single molecule magnetic tweezers to study DNA supercoiling in the presence of dehydrating or crowding co-solutes.

View Article and Find Full Text PDF

Introduction: Early in 2021, the SARS-CoV-2 incidence rate was higher in the East than in the West of the Alpes-Maritimes district in France. What was the impact of social deprivation, household overcrowding and population density per km on this difference in incidence rate?

Methods: Cases were defined as persons with a first SARS-CoV-2 positive test detected between 04/01/2021 and 14/02/2021. We studied the « French Deprivation index » (FDep), rate of overcrowded households and population density/km.

View Article and Find Full Text PDF

Membraneless organelles, often referred to as condensates or coacervates, are liquid-liquid phase-separated systems formed between noncoding RNAs and intrinsically disordered proteins. While the importance of different amino acid residues in short peptide-based condensates has been investigated, the role of the individual nucleobases or the type of heterocyclic structures, the purine vs pyrimidine nucleobases, is less researched. The cell's crowded environment has been mimicked to demonstrate its ability to induce the formation of condensates, but more research in this area is required, especially with respect to RNA-facilitated phase separation and the properties of the crowding agent, poly(ethylene glycol) (PEG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!