Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Regenerative medicine and tissue engineering aim to restore or replace impaired organs and tissues using cell transplantation supported by scaffolds. Recently scientists are focusing on developing new biomaterials that optimize cellular attachment, migration, proliferation, and differentiation. Nanoparticles, such as graphene oxide (GO), have emerged as versatile materials due to their high surface-to-volume ratio and unique chemical properties, such as electrical conductivity and flexibility. However, GO faces challenges such as cytotoxicity at high concentrations, a negative surface charge, and potential inflammatory responses; for these reasons, variations in synthesis have been studied. A GO derivative, Graphene Oxide-Polyethylenimine (GO-PEI), shows controlled porosity and structural definition, potentially offering better support for cell growth. Human amniotic fluid stem cells (hAFSCs) are a promising candidate for regenerative medicine due to their ability to differentiate into mesodermic and ectodermic lineages, their non-immunogenic nature, and ease of isolation. This study investigates the effects of GO and GO-PEI on hAFSCs, focusing on the effects on adhesion, proliferation, and metabolic features. Results indicate that GO-PEI restores cell proliferation and mitochondrial activity to control levels, with respect to GO that appeared less biocompatible. Both materials also influence the miRNA cargo of hAFSC-derived microvesicles, potentially influencing also cell-to-cell communication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms252413598 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!