Long noncoding RNAs (LncRNAs) play essential roles in numerous biological processes in mammals, such as reproductive physiology and endocrinology. Cryptorchidism is a common male reproductive disease. Circadian rhythms are actively expressed in the reproductive system. In this study, a total of 191 LncRNAs were obtained from yak testes and cryptorchids. Then, we identified NTRK2's relationship to circadian rhythm and behavioral processes. Meanwhile, the ceRNA (LncRNA-MSTRG.19083.1/miR-429-y/NTRK2) network was constructed, and its influence on circadian rhythm was revealed. The results showed that NTRK2 and LncRNA-MSTRG.19083.1 were significantly upregulated, and miR-429-y was obviously decreased in cryptorchid tissue; NTRK2 protein was mainly distributed in the Leydig cells of the testis. In addition, the upregulation of the expression level of miR-429-y resulted in the significant downregulation of LncRNA and NTRK2 levels, while the mRNA and protein levels of CREB, CLOCK, and BMAL1 were significantly upregulated; the knockdown of miR-429-y resulted in the opposite changes. Our findings suggested that LncRNA-MSTRG.19083.1 competitively binds to miR-429-y to target NTRK2 to regulate circadian rhythm through the cAMP pathway. Taken together, the results of our study provide a comprehensive understanding of how the LncRNA-miRNA-mRNA networks operate when yak cryptorchidism occurs. Knowledge of circadian-rhythm-associated mRNAs and LncRNAs could be useful for better understanding the relationship between circadian rhythm and reproduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678581PMC
http://dx.doi.org/10.3390/ijms252413553DOI Listing

Publication Analysis

Top Keywords

circadian rhythm
20
regulate circadian
8
rhythm camp
8
camp pathway
8
relationship circadian
8
circadian
6
ntrk2
5
mir-429-y
5
rhythm
5
lncrna-mstrg190831 targets
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!