Novel Tripeptides as Tyrosinase Inhibitors: In Silico and In Vitro Approaches.

Int J Mol Sci

Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.

Published: December 2024

Tyrosinase is a key enzyme responsible for the formation of melanin (a natural skin pigment with ultraviolet-protection properties). However, some people experience melanin overproduction, so new, safe, and biocompatible enzyme inhibitors are sought. New tripeptide tyrosinase inhibitors were developed using molecular modeling. A combinatorial library of tripeptides was prepared and docked to the mushroom tyrosinase crystal structure and investigated with molecular dynamics. Based on the results of calculations and expert knowledge, the three potentially most active peptides (CSF, CSN, CVL) were selected. Their in vitro properties were examined, and they achieved half-maximal inhibitory concentration (IC) values of 136.04, 177.74, and 261.79 µM, respectively. These compounds attach to the binding pocket of tyrosinase mainly through hydrogen bonds and salt bridges. Molecular dynamics simulations demonstrated the stability of the peptid-tyrosinase complexes and highlighted the persistence of key interactions throughout the simulation period. The ability of these peptides to complex copper ions was also confirmed. The CSF peptide showed the highest chelating activity with copper. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed that none of the test tripeptides showed cytotoxicity toward the reconstructed human epidermis. Our results indicated that the developed tripeptides were non-toxic and effective tyrosinase inhibitors. They could be applied as raw materials in skin-brightening or anti-aging cosmetic products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677486PMC
http://dx.doi.org/10.3390/ijms252413509DOI Listing

Publication Analysis

Top Keywords

tyrosinase inhibitors
12
molecular dynamics
8
tyrosinase
6
novel tripeptides
4
tripeptides tyrosinase
4
inhibitors
4
inhibitors silico
4
silico vitro
4
vitro approaches
4
approaches tyrosinase
4

Similar Publications

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

Unfolded protein response modulates Tyrosinase levels and melanin production during melanogenesis.

J Dermatol Sci

January 2025

Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan. Electronic address:

Background: Melanocytes protect the body from ultraviolet radiation by synthesizing melanin. Tyrosinase, a key enzyme in melanin production, accumulates in the endoplasmic reticulum (ER) during melanin synthesis, potentially causing ER stress. However, regulating ER function for melanin synthesis has been less studied than controlling Tyrosinase activity.

View Article and Find Full Text PDF

Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.

View Article and Find Full Text PDF

Skin aging is one of the degenerative processes influenced by tyrosinase, elastase, collagenase, hyaluronidase, and matrix metalloproteinase-9 (MMP9) activity. One promising avenue for discovering antiaging therapeutics is the peptides from the spine. The aim of this study was to explore the potential of peptides from spine as a multitarget inhibitor for recombinant antiaging therapies through in silico approaches.

View Article and Find Full Text PDF

Inhibitory Effect on the Tyrosinase Activity and Low Cytotoxicity of Monounsaturated Long-Chain Chelating Fatty Ester.

An Acad Bras Cienc

January 2025

Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular, Rua Augusto Corrêa, 01, 66075-110 Belém, PA, Brazil.

In the present study, 5-Hydroxy-2-(Oleoyloxymethyl) -4H-pyran-4-one (KMO 3), and their chelated with Cu(II) and Fe(III) ions were synthesized to explore their inhibitory activity against tyrosinase and cytotoxicity. To this end, the structures of the obtained compounds were confirmed by ATR/FT-IR, 13C and 1H-NMR, and UV-vis techniques. The results show that chelating fatty ester presents the bands at 1567m, 1511w cm-1 attributed to the coordinated carbonyl (Cu(II)←[O=C]2), and the bands at 1540m, 1519m cm-1 which were attributed to the coordinated carbonyl (Fe(III)←[O=C]3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!