Recombinant antibodies and, more recently, T cell receptor (TCR)-engineered T cell therapies represent two immunological strategies that have come to the forefront of clinical interest for targeting intracellular neoantigens in benign and malignant diseases. T cell-based therapies targeting neoantigens use T cells expressing a recombinant complete TCR (TCR-T cell), a chimeric antigen receptor (CAR) with the variable domains of a neoepitope-reactive TCR as a binding domain (TCR-CAR-T cell) or a TCR-like antibody as a binding domain (TCR-like CAR-T cell). Furthermore, the synthetic T cell receptor and antigen receptor (STAR) and heterodimeric TCR-like CAR (T-CAR) are designed as a double-chain TCRαβ-based receptor with variable regions of immunoglobulin heavy and light chains (VH and VL) fused to TCR-Cα and TCR-Cβ, respectively, resulting in TCR signaling. In contrast to the use of recombinant T cells, anti-neopeptide MHC (pMHC) antibodies and intrabodies neutralizing intracellular neoantigens can be more easily applied to cancer patients. However, different limitations should be considered, such as the loss of neoantigens, the modification of antigen peptide presentation, tumor heterogenicity, and the immunosuppressive activity of the tumor environment. The simultaneous application of immune checkpoint blocking antibodies and of CRISPR/Cas9-based genome editing tools to engineer different recombinant T cells with enhanced therapeutic functions could make T cell therapies more efficient and could pave the way for its routine clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms252413504DOI Listing

Publication Analysis

Top Keywords

intracellular neoantigens
12
recombinant antibodies
8
cell receptor
8
cell therapies
8
antigen receptor
8
binding domain
8
recombinant cells
8
cell
7
recombinant
5
neoantigens
5

Similar Publications

Recombinant antibodies and, more recently, T cell receptor (TCR)-engineered T cell therapies represent two immunological strategies that have come to the forefront of clinical interest for targeting intracellular neoantigens in benign and malignant diseases. T cell-based therapies targeting neoantigens use T cells expressing a recombinant complete TCR (TCR-T cell), a chimeric antigen receptor (CAR) with the variable domains of a neoepitope-reactive TCR as a binding domain (TCR-CAR-T cell) or a TCR-like antibody as a binding domain (TCR-like CAR-T cell). Furthermore, the synthetic T cell receptor and antigen receptor (STAR) and heterodimeric TCR-like CAR (T-CAR) are designed as a double-chain TCRαβ-based receptor with variable regions of immunoglobulin heavy and light chains (VH and VL) fused to TCR-Cα and TCR-Cβ, respectively, resulting in TCR signaling.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a crucial role in initiating antitumor immune responses. However, in the tumor environment, dendritic cells often exhibit impaired antigen presentation and adopt an immunosuppressive phenotype, which hinders their function and reduces their ability to efficiently present antigens. Here, a dual catalytic oxide nanosponge (DON) doubling as a remotely boosted catalyst and an inducer of programming DCs to program immune therapy is reported.

View Article and Find Full Text PDF

The clinical success of cancer immunotherapy has driven ongoing efforts to identify novel targets that can effectively guide potent effector functions to eliminate malignant cells. Traditionally, immunotherapies have focused on surface antigens; however, these represent only a small fraction of the cancer proteome, limiting their therapeutic potential. In contrast, the majority of proteins within the human proteome are intracellular, yet they are represented on the cell surface as short peptides presented by MHC class I molecules.

View Article and Find Full Text PDF

Background: Neoantigen vaccines can induce or enhance highly specific antitumor immune responses with minimal risk of autoimmunity. We have developed a neoantigen DNA vaccine platform capable of efficiently presenting both HLA class I and II epitopes and performed a phase 1 clinical trial in triple-negative breast cancer patients with persistent disease on surgical pathology following neoadjuvant chemotherapy, a patient population at high risk of disease recurrence.

Methods: Expressed somatic mutations were identified by tumor/normal exome sequencing and tumor RNA sequencing.

View Article and Find Full Text PDF

Neoantigen sequestrated autophagosomes as therapeutic cancer vaccines.

J Control Release

December 2024

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China. Electronic address:

Article Synopsis
  • - Neoantigens are promising for personalized cancer vaccines due to their strong ability to provoke immune responses and low chance of causing autoimmune issues.
  • - This study introduces a new vaccine called autophagosome-based neoantigen vaccine (APNV), which is designed using genetically modified cells that present melanoma-specific neoantigens.
  • - The APNV, combined with an anti-PD-1 immune checkpoint inhibitor, shows effectiveness in reducing tumor recurrence and preventing metastasis in melanoma models, suggesting its potential for personalized cancer therapy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!