Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Myopic eye growth induces mechanical stretch, which can lead to structural and functional retinal alterations. Here, we investigated the effect of lens-induced myopic growth on the distribution of retinal ganglion cells (RGCs), glial fibrillary acidic protein (GFAP) expression and intensity, and peripapillary retinal nerve fiber layer (ppRNFL) thickness in common marmosets () induced with myopia continuously for six months, using immunohistochemistry and spectral-domain optical coherence tomography. We also explored the relationship between cellular structural parameters and the photopic negative response (PhNR) using full-field electroretinography. Marmosets induced with myopia for six months developed axial myopia, had a thinner ppRNFL, reduced peripapillary ganglion cell (≈20%) and astrocyte density (≈42%), increased panretinal GFAP expression (≈42%) and nasal mid-periphery staining intensity (≈81%) compared to age-matched controls. Greater degrees of myopia and vitreous elongation were associated with reduced peripapillary RGCs and astrocyte density, and increased GFAP expression and intensity. These cellular structural changes did not show a significant relationship with the features of the PhNR, which remained unchanged. The outcomes of this study suggest that myopia induces a reorganization of the peripapillary inner retina at the cellular level that may not result in measurable functional repercussions at this stage of myopia development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms252413484 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!