A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-Wide Identification of the Gene Family and the Function of Under Salt Stress. | LitMetric

A comprehensive genome-wide identification of SET-domain-containing genes in (tomato) has revealed 46 members. Phylogenetic analysis showed that these genes, along with those from and , are divided into five subfamilies, with Subfamilies II and V being the largest. Motif and domain analyses identified 15 conserved motifs and revealed the presence of pre-SET and post-SET domains in several genes, suggesting functional diversification. Gene structure analysis further demonstrated variation in exon-intron organization, likely contributing to differential gene regulation. Promoter analysis identified -acting elements related to light responsiveness, plant growth, hormones, and stress, implicating genes in various biological processes. RNA-seq and qRT-PCR data revealed distinct expression patterns of genes under salt stress, with several genes showing significant upregulation, indicating their potential role in stress tolerance. In particular, silencing using VIGS reduced tomato's tolerance to salt stress, leading to higher lipid peroxidation, reduced antioxidant enzyme activity, and decreased proline content, further confirming its critical role in salt stress response. These findings provide valuable insights into the functional diversity, evolutionary history, and stress-related roles of SET domain genes in tomato, with potential applications for crop improvement strategies.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms252413461DOI Listing

Publication Analysis

Top Keywords

salt stress
16
genome-wide identification
8
genes tomato
8
genes
7
stress
6
identification gene
4
gene family
4
family function
4
salt
4
function salt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!