As a transcription factor, GLI1 plays an important role in cell cycle regulation, DNA replication, and DNA damage responses. The aberrant activation of GLI1 has been associated with cancers such as glioma, osteosarcoma, and rhabdomyosarcoma. The binding of GLI1 to a specific DNA sequence was achieved by five tandem zinc finger motifs (Zif motifs) on the N-terminal part of the molecule. Here, we reported a novel homodimeric crystal structure of Zif1-2. These two Zif motifs are linearized. Namely, Zif2 does not bend and interact with Zif1 of the same molecule. Instead, Zif1 from one molecule interacts with Zif2 from another molecule. The dimer interface of Zif1-2 is unique and different from the conformation of Zif1-2 from the GLI1-DNA co-crystal structure. The dimeric conformation of Zif motifs could represent the native conformation of apo form GLI1 Zif motifs in the cell. The molecular dynamics simulation result of the homodimer, the in silico mutagenesis, and the predicted protease stability of these mutants using a large language model are also presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677393 | PMC |
http://dx.doi.org/10.3390/ijms252413368 | DOI Listing |
Int J Mol Sci
December 2024
Scientific Platforms, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA.
As a transcription factor, GLI1 plays an important role in cell cycle regulation, DNA replication, and DNA damage responses. The aberrant activation of GLI1 has been associated with cancers such as glioma, osteosarcoma, and rhabdomyosarcoma. The binding of GLI1 to a specific DNA sequence was achieved by five tandem zinc finger motifs (Zif motifs) on the N-terminal part of the molecule.
View Article and Find Full Text PDFNat Commun
August 2024
Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China.
Small
December 2024
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits. 2050, South Africa.
The designed and ordered co-immobilization of multiple enzymes for vectorial biocatalysis is challenging. Here, a combination of protein phase separation and bioorthogonal linking is used to generate a zeolitic imidazole framework (ZIF-8) containing co-immobilized enzymes. Zn ions induce the clustering of minimal protein modules, such as 6-His tag, proline-rich motif (PRM) and SRC homology 3 (SH3) domains, and allow for phase separation of the coupled aldoketoreductase (AKR) and alcohol dehydrogenase (ADH) at low concentrations.
View Article and Find Full Text PDFPLoS Pathog
June 2024
Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date.
View Article and Find Full Text PDFGels
November 2023
Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
Hydrogels are three-dimensional (3D) water-swellable polymeric matrices that are used extensively in tissue engineering and drug delivery. Hydrogels can be conformed into any desirable shape using 3D bio-printing, making them suitable for personalized treatment. Among the different 3D bio-printing techniques, digital light processing (DLP)-based printing offers the advantage of quickly fabricating high resolution structures, reducing the chances of cell damage during the printing process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!