Host-pathogen interactions and the design of vaccines for aquaculture fish viruses are challenging and call for innovative approaches. This study explores the potential of adenoviral (Ad) vectors Ad5 and chimeric Ad5/40 as gene delivery tools for fish brain cells susceptible to neurotropic viruses. For this purpose, European sea bass () DLB-1 and gilthead seabream () SaB-1 brain cell lines were infected with Ad5 or Ad5/40 vectors expressing GFP, and we evaluated their capacity for infection by fluorescence microscopy and flow cytometry, as well as their antiviral innate immune response by the transcription of gene markers ( and ). We found that both vectors are able to infect DLB-1 and SaB-1 brain cell lines to similar levels, as demonstrated by fluorescence microscopy and flow cytometry, though the infection efficiency was low. In addition, infection with Ad vectors regulated the transcription of genes related to the interferon-mediated antiviral immune response. Our results indicate that the Ad5/40 vector achieves better infection and consistent cellular distribution. These findings suggest that these vectors may offer targeted gene delivery and local immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676386 | PMC |
http://dx.doi.org/10.3390/ijms252413357 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!