Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits. In practice, an IgG antibody against the A-subunit of a target toxin is selected from commercially available sources and immobilized on the surface of Au nanoparticles to constitute a multivalent IgG/Au nanoconjugate. The derived IgG/Au conjugate is used in the pretreatment process of test samples for deactivating biological toxins in the form of a ternary toxin/antibody/Au complex. This process is implemented in advance to reduce the risk of handling biological toxins in laboratory work. On the other hand, the human glycolipid is immobilized on a tiny glass plate and used as a biosensor chip. The biosensor chip is set in the chamber of a flow sensing system using localized surface plasmon resonance (LSPR) spectrometry available in portable size at relatively low cost. In principle, the LSPR sensing system enables us to perform a rapid and selective detection for different kinds of biological toxins if the human glycolipid is correctly selected and installed in the sensing system. In the present LSPR sensing approach, a target AB toxin may have been deactivated during the pretreatment process. The test sample containing the deactivated AB toxin becomes a real target to be analyzed by the sensing system. In the present, we describe the concept of employing the commercially available IgG antibody in the pretreatment process followed by a typical procedure for converting it into the multivalent antibody/Au nanoconjugate and its preliminary applications in the LSPR detection of a ricin homologue (RCA) and BoNTs in different serotypes. The tested LSPR sensing approach has worked very well for the ricin homologue and certain serotypes of botulinum neurotoxins like BoNT/A, indicating that the prior deactivation process at their A-domains causes no significant damage to the function of their B-domains with respect to determining the host cell-membrane glycolipid. The experimental results also indicated that LSPR responses from these pretreated AB toxins are significantly amplified. That is obviously thanks to the presence of Au nanoparticles in the multivalent IgG/Au nanoconjugate. We suggest in conclusion that the proposed LSPR sensing approach will provide us with a safe and useful tool for the study of biological AB toxins based on their unique quaternary protein structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms252413352 | DOI Listing |
Heredity (Edinb)
January 2025
Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
Maternal effects have been shown to play influential roles in many evolutionary and ecological processes. However, understanding how environmental stimuli induce within-generation responses that transverse across generations remains elusive, particularly when attempting to segregate confounding effects from offspring genotypes. This review synthesizes literature regarding resource- and predation-driven maternal effects in the model system Daphnia, detailing how the maternal generation responds to the environmental stimuli and the maternal effects seen in the offspring generation(s).
View Article and Find Full Text PDFBMJ Open
January 2025
Diabetes Care Unit, Caen University Hospital, Caen cedex 09, France.
Introduction: Glycated haemoglobin (HbA1c) is currently the gold standard for assessing glycaemic control in diabetes, given the established relationship with microvascular and macrovascular complications in this condition. However, HbA1c is affected by non-glycaemic factors, while also failing to provide data on hypoglycaemic exposure and glucose variability, which are associated with adverse vascular outcomes. Continuous glucose monitoring (CGM)-derived glucose metrics provide a more comprehensive assessment of glycaemia, but their role in predicting future vascular complications remains unclear.
View Article and Find Full Text PDFFood Res Int
January 2025
Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.
While reducing the consumption of animal-source foods is recommended for planetary and human health, potential emerging food safety risks associated with the transition to dietary patterns featuring plant-based meat (PBMA) and dairy alternatives (PBDA) remain unexplored. We assessed the exposure to mycotoxins and ranked the associated health risks related to the consumption of PBMA and PBDA. We simulated diets by replacing animal-source proteins with their plant-based alternatives.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China. Electronic address:
Reactive carbonyl species (RCS) are a class of compounds with one or more C = O structures with highly reactive electrophilic properties. This comprehensive review delves into the multifaceted role of RCS in thermally processed foods, where they serve as both crucial intermediates in the development of food color and flavor, as well as precursors of potentially harmful compounds. By exploring the carbonyl pool concept, the impact of RCS equilibrium on the formation and reduction of hazardous substances such as acrylamide, hydroxymethylfurfural, advanced glycation end-products, and heterocyclic amines was elucidated.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.
The neurotoxin β-methylamino-L-alanine (BMAA) produced by cyanobacteria is widely present in foods and dietary supplements, posing a significant threat to human health. Ganglioside GM1 (GM1) has demonstrated potential for treating neurodegenerative diseases; however, its ability to prevent BMAA-induced neurotoxicity remains uncertain. In this study, zebrafish embryos were treated with Ganglioside GM1 to investigate its neuroprotective effects against BMAA exposure and the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!