Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Obstructive sleep apnea syndrome (OSAS) is prevalent among children and is associated with elevated blood pressure (BP), posing a risk for future hypertension and cardiovascular diseases. While the roles of gut microbiota and systemic inflammation in OSAS pathogenesis are recognized in adults and animal models, their impact on pediatric BP remains less understood. This cross-sectional study explored the relationships between polysomnographic parameters, gut microbiota, systemic inflammation, and BP in 60 children with OSAS. Significant associations between specific microbial profiles-including beta diversity and 31 marker microbes-and BP variations were observed. These microbial profiles correlated with significant alterations in systemic inflammation markers like interleukin-17 and tumor necrosis factor-α. Notably, the relative abundance of was related to fluctuations in these inflammatory markers and BP levels. The research further highlighted the unique microbial and cytokine profiles exhibited by children with different BP levels, indicating a substantial role of gut microbiota and systemic inflammation in influencing pediatric cardiovascular health. The findings suggest integrating gut microbiota management into comprehensive cardiovascular risk strategies for children with OSAS. This initiative underscores the need for further investigations to decode the mechanisms behind these associations, which could lead to innovative treatments for pediatric OSAS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms252413344 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!