Xenobiotic aromatic compounds are the raw materials of necessities in modern life, such as plastics, pesticides, and antibiotics. To meet the global requirements, their production and consumption have continually increased, and thus, the vast amount of waste generated results in prominent environmental pollution. Fortunately, some microorganisms (e.g., spp.) can specially use these pollutants as substrates for growth, allowing for the development of bioremediation technology to achieve sustainable development goals. Here, we describe common xenobiotic aromatic compounds used in our daily life, discuss their impact on the environment, and review their biodegradation strategies by , as an example. Finally, we argue that microbiome engineering opens up the avenue to future biofilm-based biodegradation technology to improve aromatic compound bioremediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676683 | PMC |
http://dx.doi.org/10.3390/ijms252413317 | DOI Listing |
Int J Mol Sci
December 2024
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
Xenobiotic aromatic compounds are the raw materials of necessities in modern life, such as plastics, pesticides, and antibiotics. To meet the global requirements, their production and consumption have continually increased, and thus, the vast amount of waste generated results in prominent environmental pollution. Fortunately, some microorganisms (e.
View Article and Find Full Text PDFEnviron Res
January 2025
Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany.
Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
December 2024
Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, 117544, Singapore. Electronic address:
The metabolic conversion of aromatic amines to N-acetylated forms in skin and keratinocytes depends on N-acetyltransferase-1 (NAT1). Common hair color ingredient such as para-phenylenediamine (PPD) causes allergic contact dermatitis. We explored how different electronic substituents on PPD aided NAT1 enzyme biotransform oxidative arylamine (AA) compounds G1-G13 by N-acetylation, NAT-1 activity assays, metabolism, and in vitro clearance investigations in human keratinocytes, while identifying NAT-1 protein levels by Western blot and qRT-PCR.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India.
Aims: To isolate polyethylene terephthalate (PET)-degrading bacteria and elucidate the underlying mechanisms of PET biodegradation through biochemical and genome analysis.
Methods And Results: Rhodococcus rhodochrous IITR131 was found to degrade PET. Strain IITR131 genome revealed metabolic versatility of the bacterium and had the ability to form biofilm on PET sheet, resulting in the cracks, abrasions, and degradation.
J Hazard Mater
December 2024
Department of Cell Biology and Genetics, Federal University of Rio Grande do Norte, Natal 59078900, Brazil. Electronic address:
This study investigates the transcriptional profile of a novel oil-degrading microbial consortium (MC1) composed of four bacterial isolates from Brazilian oil reservoirs: Acinetobacter baumannii subsp. oleum ficedula, Bacillus velezensis, Enterobacter asburiae, and Klebsiella pneumoniae. Genomic analysis revealed an enrichment of genes associated with xenobiotic degradation, particularly for aminobenzoate, atrazine, and aromatic compounds, compared to reference genomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!