Evolution and Function of MADS-Box Transcription Factors in Plants.

Int J Mol Sci

National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.

Published: December 2024

The MADS-box transcription factor (TF) gene family is pivotal in various aspects of plant biology, particularly in growth, development, and environmental adaptation. It comprises Type I and Type II categories, with the MIKC-type subgroups playing a crucial role in regulating genes essential for both the vegetative and reproductive stages of plant life. Notably, MADS-box proteins can influence processes such as flowering, fruit ripening, and stress tolerance. Here, we provide a comprehensive overview of the structural features, evolutionary lineage, multifaceted functions, and the role of MADS-box TFs in responding to biotic and abiotic stresses. We particularly emphasize their implications for crop enhancement, especially in light of recent advances in understanding the impact on sugarcane ( spp.), a vital tropical crop. By consolidating cutting-edge findings, we highlight potential avenues for expanding our knowledge base and enhancing the genetic traits of sugarcane through functional genomics and advanced breeding techniques. This review underscores the significance of MADS-box TFs in achieving improved yields and stress resilience in agricultural contexts, positioning them as promising targets for future research in crop science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676252PMC
http://dx.doi.org/10.3390/ijms252413278DOI Listing

Publication Analysis

Top Keywords

mads-box transcription
8
mads-box tfs
8
mads-box
5
evolution function
4
function mads-box
4
transcription factors
4
factors plants
4
plants mads-box
4
transcription factor
4
factor gene
4

Similar Publications

Wheat streak mosaic virus (WSMV; ) and Triticum mosaic virus (TriMV; ), the type members of the genera and , respectively, in the family , are economically important wheat viruses in the Great Plains region of the USA. Co-infection of wheat by WSMV and TriMV results in disease synergism. Wheat transcriptome from singly (WSMV or TriMV) and doubly (WSMV+TriMV) infected upper uninoculated leaves were analyzed by RNA-Seq at 9, 12, and 21 days postinoculation.

View Article and Find Full Text PDF

FLOWERING LOCUS C-like mediates low-ambient-temperature-induced late flowering in chrysanthemum.

J Exp Bot

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.

The flowering time of Chrysanthemum morifolium predominantly depends on day length but is also sensitive to ambient temperature. However, the mechanisms underlying the response of chrysanthemum to ambient temperature are mainly unknown. This study identified a MADS-box transcription factor called CmFLC-like, a representative low ambient temperature-responsive factor induced in chrysanthemum leaves and shoot apical meristems at 15°C.

View Article and Find Full Text PDF

Background: Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation.

View Article and Find Full Text PDF

Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield.

View Article and Find Full Text PDF

Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!