A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lithium, Inflammation and Neuroinflammation with Emphasis on Bipolar Disorder-A Narrative Review. | LitMetric

Lithium, Inflammation and Neuroinflammation with Emphasis on Bipolar Disorder-A Narrative Review.

Int J Mol Sci

Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Zlotowski Center for Neuroscience and Zelman Center-The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.

Published: December 2024

This narrative review examines lithium's effects on immune function, inflammation and cell survival, particularly in bipolar disorder (BD) in in vitro studies, animal models and clinical studies. In vitro studies show that high lithium concentrations (5 mM, beyond the therapeutic window) reduce interleukin (IL)-1β production in monocytes and enhance T-lymphocyte resistance, suggesting a protective role against cell death. Lithium modulates oxidative stress in lipopolysaccharide (LPS)-activated macrophages by inhibiting nuclear factor (NF)-ƙB activity and reducing nitric oxide production. At therapeutically relevant levels, lithium increased both pro-inflammatory [interferon (INF)-γ, IL-8 and tumor necrosis factor (TNF)-α)] and anti-inflammatory (IL-10) cytokines on whole blood supernatant culture in healthy volunteers, influencing the balance of pro- and anti-inflammatory responses. Animal models reveal lithium's potential to alleviate inflammatory diseases by reducing pro-inflammatory cytokines and enhancing anti-inflammatory responses. It also induces selective macrophage death in atherosclerotic plaques without harming other cells. In primary rat cerebellum cultures (ex vivo), lithium prevents neuronal loss and inhibits astroglial growth, impacting astrocytes and microglia. Clinical studies show that lithium alters cytokine profiles and reduces neuroinflammatory markers in BD patients. Chronic treatment decreases IL-2, IL-6, IL-10 and IFN-γ secretion from peripheral blood leukocytes. Lithium response correlates with TNF-α levels, with poor responders showing higher TNF-α. Overall, these findings elucidate lithium's diverse mechanisms in modulating immune responses, reducing inflammation and promoting cell survival, with significant implications for managing BD and other inflammation-related conditions. Yet, to better understand the drug's impact in BD and other inflammatory/neuroinflammatory conditions, further research is warranted to appreciate lithium's therapeutic potential and its role in immune regulation.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms252413277DOI Listing

Publication Analysis

Top Keywords

narrative review
8
cell survival
8
vitro studies
8
animal models
8
clinical studies
8
anti-inflammatory responses
8
lithium
7
lithium inflammation
4
inflammation neuroinflammation
4
neuroinflammation emphasis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!