Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acute myocardial infarction (AMI) is a critical medical condition that requires immediate attention to minimise heart damage and improve survival rates. Early identification and prompt treatment are essential to save the patient's life. Currently, the treatment strategy focuses on restoring blood flow to the myocardium as quickly as possible. However, reperfusion activates several cellular cascades that contribute to organ dysfunction, resulting in the ischaemia/reperfusion (I/R) injury. The search for treatments against AMI and I/R injury is urgent due to the shortage of effective treatments at present. In this regard, histone deacetylase (HDAC) inhibitors emerge as a promising treatment against myocardial infarction. The objective of this systematic review is to analyse the effects of HDAC inhibitors on ventricular function, cardiac remodelling and infarct size, among other parameters, focusing on the signalling pathways that may mediate these cardiovascular effects and protect against AMI. Original experimental studies examining the effects of HDAC inhibitors on AMI were included in the review using the PubMed and Scopus databases. Non-experimental papers were excluded. The SYRCLE RoB tool was used to assess risk of bias and the results were summarised in a table and presented in sections according to the type of HDAC inhibitor used. A total of 18 studies were included, 10 of them using trichostatin A (TSA) as an HDAC inhibitor and concluding that the treatment improved ventricular function, reduced infarct size, and inhibited myocardial hypertrophy and remodelling after AMI. Other HDAC inhibitors, such as suberoylanilide hydroxamic acid (SAHA), valproic acid (VPA), mocetinostat, givinostat, entinostat, apicidin, and RGFP966, were also analysed, showing antioxidant and anti-inflammatory effects, an improvement in cardiac function and remodelling, and a decrease in apoptosis, among other effects. HDAC inhibitors constitute a significant promise for the treatment of AMI due to their diverse cardioprotective effects. However, high risk of selection, performance, and detection bias in the in vivo studies means that their application in the clinical setting is still a long way off and more research is needed to better understand their benefits and possible side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/jcm13247797 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!