This study investigates the production and nutritional quality of cv. Mombasa grass under varying levels of water stress and nitrogen (N) fertilization, aiming to enhance forage production in harsh environments. Four irrigation levels (5760, 6912, 4608, and 3456 m ha year) and three N fertilizer doses (115, 57.5, and 0 kg ha year) were tested. The results indicate that Mombasa grass produced higher fresh and dry weights under higher irrigation levels (I1 and I2) compared to water deficit conditions across all cuts. Interestingly, under moderate water stress (I3), the dry weight was not significantly different from that under higher irrigation for the sixth harvest in the first season. Water deficit conditions led to a significant reduction in protein content across all treatments. However, under lower irrigation levels (I3 and I4), there was a significant increase in phosphorus (P), potassium (K), iron (Fe), and zinc (Zn) concentrations. A heatmap analysis of shape descriptors grouped the productivity and nutritional traits into two clusters based on their response to combined fertilization and drought stress. This analysis revealed that the dry weight, number of leaves, and Fe and Zn contents were positively affected under moderate water stress (80% of control; 4608 m ha year) with recommended N fertilization. The study concludes that cv. Mombasa is tolerant to moderate water stress and is suitable for forage production in the Qassim region, Saudi Arabia.

Download full-text PDF

Source
http://dx.doi.org/10.3390/life14121614DOI Listing

Publication Analysis

Top Keywords

water stress
16
water deficit
12
irrigation levels
12
moderate water
12
nitrogen fertilization
8
mombasa grass
8
forage production
8
higher irrigation
8
deficit conditions
8
dry weight
8

Similar Publications

Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications.

View Article and Find Full Text PDF

An experiment was conducted for 60 days in a 500L capacity FRP tank containing inland ground saline water (fortified to a level of 50% potassium) with one control (sediment) and three treatments; T1(Paddy Straw Biochar (PSB) in sediment), T2 (Banana Peduncle Biochar (BPB) in sediment), and T3 (PSB + BPB in sediment). Biochar (100 g) was amended with sediment (25 kg) at 9 tons/ha. Shrimps of average weight 5 ± 0.

View Article and Find Full Text PDF

Herbicide paraquat dichloride, a potent redox agent found its way to natural water bodies and influences their health; however, its impact on the reproductive health of fish is potentially less studied and requires clear investigation. This study was conducted to elucidate its effect on the gonadal health of female fish, Channa punctatus over 60 days. The 96-h LC of test herbicide was calculated as 0.

View Article and Find Full Text PDF

Freshwater ecosystems are highly biodiverse and important for livelihoods and economic development, but are under substantial stress. To date, comprehensive global assessments of extinction risk have not included any speciose groups primarily living in freshwaters. Consequently, data from predominantly terrestrial tetrapods are used to guide environmental policy and conservation prioritization, whereas recent proposals for target setting in freshwaters use abiotic factors.

View Article and Find Full Text PDF

Synergistic and antagonistic relationships between cytokinins and other plant growth regulators are important in response to changing environmental conditions. Our study aimed to determine the functions of SlHP2 and SlHP3, two members of cytokinin signaling in tomato, in drought stress response using CRISPR/Cas9-mediated mutagenesis. Ten distinct genome-edited lines were generated via Agrobacterium tumefaciens-mediated gene transfer and confirmed through Sanger sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!