Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs). The initial step involved the fabrication and characterization of CF and CF enriched with HA (CF-HA). Subsequently, T-LESCs were seeded on CF, CF-HA, and tissue culture plastic (TCP). Thereafter, the effect of these matrices on basic cellular function and tissue-specific extracellular matrix (ECM) deposition with or without MMC was evaluated. The viability and metabolic activity of cells cultured on CF, CF-HA, and TCP were found to be similar, while CF-HA induced the highest ( < 0.05) cell proliferation. It is notable that CF and HA induced cell growth, whereas MMC increased ( < 0.05) the deposition of collagen IV, fibronectin, and laminin in the T-LESC culture. The data highlight the potential of, in particular, immortalized cells and MMC for the development of biomimetic cell culture substrates, which could be utilized in ocular surface reconstruction following further in vitro, in vivo, and clinical validation of the approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678493 | PMC |
http://dx.doi.org/10.3390/life14121552 | DOI Listing |
BMJ Case Rep
January 2025
Cornea, Dr Shroff's Charity Eye Hospital, New Delhi, India
A woman in her 50s underwent simple limbal epithelial transplantation (SLET) in the left eye for chemical injury with total limbal stem cell deficiency. A seroma, a hitherto unreported complication of the procedure was noted on the 10th postoperative day. It was associated with an accumulation of inflammatory cells and exudates in the inferior part of the amniotic membrane resembling a hypopyon.
View Article and Find Full Text PDFAnn Ital Chir
January 2025
Department of Ophthalmology, Affiliated Hospital 2 of Nantong University, 226001 Nantong, Jiangsu, China.
Aim: This study aimed to evaluate the impact of pterygium excision combined with autologous limbal stem cell transplantation on microvascular density, tear film stability, and corneal wound healing in the management of pterygium.
Methods: A retrospective analysis was conducted on 317 patients with pterygium who underwent treatment between January 2021 and January 2024. Patients were divided into a control group (pterygium excision alone, n = 161) and a study group (pterygium excision combined with autologous limbal stem cell transplantation, n = 156) based on the surgical approach.
Acta Biomater
January 2025
Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China. Electronic address:
The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis.
View Article and Find Full Text PDFActa Biomater
January 2025
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:
Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
Purpose: To develop a method for enriching keratinocyte progenitor cells (KPCs) and establish a limbal niche (LN)-mediated transdifferentiation protocol of KPCs into corneal epithelial cells.
Methods: Limbal niche cells (LNCs) were isolated from limbal tissues through enzymatic digestion and characterized. Conditioned medium from LNCs cultures was collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!