In general, the nerve cells of the peripheral nervous system regenerate normally within a certain period after the physical damage of their axon. However, when peripheral nerves are transected by trauma or tissue extraction for cancer treatment, spontaneous nerve regeneration cannot occur. Therefore, it is necessary to perform microsurgery to connect the transected nerve directly or insert a nerve conduit to connect it. In this study, we applied human tonsillar mesenchymal stem cell (TMSC)-derived Schwann cell-like cells (TMSC-SCs) to facilitate nerve regeneration and prevent muscle atrophy after neurorrhaphy. The TMSC-SCs were manufactured in a good manufacturing practice facility and termed neuronal regeneration-promoting cells (NRPCs). A rat model of peripheral nerve injury (PNI) was generated and a mixture of NRPCs and fibrin glue was transplanted into the injured nerve after neurorrhaphy. The application of NRPCs and fibrin glue led to the efficient induction of sciatic nerve regeneration, with the sparing of gastrocnemius muscles and neuromuscular junctions. This sparing effect of NRPCs toward neuromuscular junctions might prevent muscle atrophy after neurorrhaphy. These results suggest that a mixture of NRPCs and fibrin glue may be a therapeutic candidate to enable peripheral nerve and muscle regeneration in the context of neurorrhaphy in patients with PNI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cells13242137 | DOI Listing |
J Physiol
January 2025
Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
We previously reported that elevated expression of phospholipid hydroperoxide glutathione peroxidase 4, an enzyme that regulates membrane lipid hydroperoxides, can mitigate sarcopenia in mice. However, it is still unknown whether a pharmacological intervention designed to modulate lipid hydroperoxides might be an effective strategy to reduce sarcopenia in aged mice. Here we asked whether a newly developed compound, CMD-35647 (CMD), can reduce muscle atrophy induced by sciatic nerve transection.
View Article and Find Full Text PDFMicroPubl Biol
December 2024
Biology, University of Kentucky, Lexington, Kentucky, United States.
GV-58 is known to increase the opening time of the mammalian P-type calcium channel in presynaptic motor nerve terminals. GV-58 is suggested as a therapeutic agent for dampening the symptoms of amyotrophic lateral sclerosis. To further understand the mechanisms of GV-58 actions, the and crayfish neuromuscular junctions were used as models.
View Article and Find Full Text PDFEur J Neurol
January 2025
Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
Background: Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy. In this study, we aimed to analyze the genetic spectrum and describe phenotypic features in a large cohort from Türkiye.
Methods: Demographic and clinical findings were recorded.
Cells
December 2024
Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea.
In general, the nerve cells of the peripheral nervous system regenerate normally within a certain period after the physical damage of their axon. However, when peripheral nerves are transected by trauma or tissue extraction for cancer treatment, spontaneous nerve regeneration cannot occur. Therefore, it is necessary to perform microsurgery to connect the transected nerve directly or insert a nerve conduit to connect it.
View Article and Find Full Text PDFClin Physiol Funct Imaging
January 2025
Faculty of Medicine, Department Radiology, Gazi University, Ankara, Turkey.
Background: Optimizing hamstring exercises is crucial for injury prevention and performance. This study explored the effects of blood flow restriction (BFR) during Nordic hamstring exercises (NHE) on hamstring muscle activation and vascular function.
Methods: A randomized, single-blind study included 14 healthy, physically active males (mean age: 27.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!