Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Membrane proteins, especially extracellular domains, are key therapeutic targets due to their role in cell communication and associations. Yet, their functions and interactions often remain unclear. This study presents a general method to discover interactions of membrane proteins with immune cells and subsequently to deorphanize their respective receptors. We developed a comprehensive recombinant protein library of extracellular domains of human transmembrane proteins and proteins found in the ER-Golgi-lysosomal systems. Using this library, we conducted a flow-cytometric screen that identified several cell surface binding events, including an interaction between carbonic anhydrase 9 (CAH9/CA9/CAIX) and CD14 cells. Further analysis revealed this interaction was indirect and mediated via platelets bound to the monocytes. CA9, best known for its diverse roles in cancer, is a promising therapeutic target. We utilized our library to develop an AlphaLISA high-throughput screening assay, identifying CLEC2 as one robust CA9 binding partner. A five-amino-acid sequence (EDLPT) in CA9, identical to a CLEC2 binding domain in Podoplanin (PDPN), was found to be essential for this interaction. Like PDPN, CA9-induced CLEC2 signaling is mediated via Syk. A Hodgkin's lymphoma cell line (HDLM-2) endogenously expressing CA9 can activate Syk-dependent CLEC2 signaling, providing enticing evidence for a novel function of CA9 in hematological cancers. In conclusion, we identified numerous interactions with monocytes and platelets and validated one, CA9, as an endogenous CLEC2 ligand. We provide a new list of other putative CA9 interaction partners and uncovered CA9-induced CLEC2 activation, providing new insights for CA9-based therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cells13242083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!