A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alzheimer's Disease: In Vitro and In Vivo Evidence of Activation of the Plasma Bradykinin-Forming Cascade and Implications for Therapy. | LitMetric

The plaques associated with Alzheimer's disease are formed as a result of the aggregation of Aβ peptides, which vary in length from 38 to 43 amino acids. The 1-40 peptide is the most abundant, while the 1-42 peptide appears to be the most destructive to neurons and/or glial cells in a variety of assays. We have demonstrated that aggregated Aβ, a state prior to plaque formation, will activate the plasma bradykinin-forming pathway when tested in vitro. Aggregation is zinc-dependent, optimal at 25-50 µM, and the rate of aggregation is paralleled by the rate of activation of the bradykinin-forming pathway as assessed by plasma kallikrein formation. The aggregation of Aβ 1-38, 1-40, and 1-42 is optimal after incubation for 3 days, 3 h, and under 1 min, respectively. The cascade is initiated by the autoactivation of factor XII upon binding to aggregated Aβ; then, prekallikrein is converted to kallikrein, which cleaves high-molecular-weight kininogen (HK) to release bradykinin. Studies by a variety of other researchers have demonstrated the presence of each "activation-step" in either the plasma or spinal fluid of patients with Alzheimer's disease, including activated factor XII, kallikrein, and bradykinin itself. There is also evidence that activation is more prominent as dementia worsens. We now have medications that can block each step of the bradykinin-forming pathway as currently employed for the therapy of hereditary angioedema. Given the current state of therapy for Alzheimer's disease, which includes monoclonal antibodies that retard the rate of progression by 30% at most and have significant side effects, it seems imperative to explore prophylaxis using one of the long-acting agents that target plasma kallikrein or factor XIIa. There is a long-acting bradykinin antagonist in development, and techniques to target kallikrein mRNA to lower levels or knock out the prekallikrein gene are being developed.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells13242039DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
16
bradykinin-forming pathway
12
evidence activation
8
plasma bradykinin-forming
8
aggregation aβ
8
aggregated aβ
8
plasma kallikrein
8
factor xii
8
plasma
5
kallikrein
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!