Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metastatic spine cancer can cause pain and neurological issues, making it challenging to distinguish from spinal compression fractures using magnetic resonance imaging (MRI). To improve diagnostic accuracy, this study developed artificial intelligence (AI) models to differentiate between metastatic spine cancer and spinal compression fractures in MRI images. MRI data from Gyeongsang National University Hospital, collected from January 2019 to April 2022, were processed using Otsu's binarization and Canny edge detection algorithms. Using these preprocessed datasets, convolutional neural network (CNN) and support vector machine (SVM) models were built. The T1-weighted image-based CNN model demonstrated high sensitivity (1.00) and accuracy (0.98) in identifying metastatic spine cancer, particularly with data processed by Otsu's binarization and Canny edge detection, achieving exceptional performance in detecting cancerous cases. This approach highlights the potential of preprocessed MRI data for AI-assisted diagnosis, supporting clinical applications in distinguishing metastatic spine cancer from spinal compression fractures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/bioengineering11121264 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!