A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Breast Tumor Detection and Diagnosis Using an Improved Faster R-CNN in DCE-MRI. | LitMetric

Breast Tumor Detection and Diagnosis Using an Improved Faster R-CNN in DCE-MRI.

Bioengineering (Basel)

School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China.

Published: December 2024

AI-based breast cancer detection can improve the sensitivity and specificity of detection, especially for small lesions, which has clinical value in realizing early detection and treatment so as to reduce mortality. The two-stage detection network performs well; however, it adopts an imprecise ROI during classification, which can easily include surrounding tumor tissues. Additionally, fuzzy noise is a significant contributor to false positives. We adopted Faster RCNN as the architecture, introduced ROI aligning to minimize quantization errors and feature pyramid network (FPN) to extract different resolution features, added a bounding box quadratic regression feature map extraction network and three convolutional layers to reduce interference from tumor surrounding information, and extracted more accurate and deeper feature maps. Our approach outperformed Faster R-CNN, Mask R-CNN, and YOLOv9 in breast cancer detection across 485 internal cases. We achieved superior performance in mAP, sensitivity, and false positive rate ((0.752, 0.950, 0.133) vs. (0.711, 0.950, 0.200) vs. (0.718, 0.880, 0.120) vs. (0.658, 0.680, 405)), which represents a 38.5% reduction in false positives compared to manual detection. Additionally, in a public dataset of 220 cases, our model also demonstrated the best performance. It showed improved sensitivity and specificity, effectively assisting doctors in diagnosing cancer.

Download full-text PDF

Source
http://dx.doi.org/10.3390/bioengineering11121217DOI Listing

Publication Analysis

Top Keywords

faster r-cnn
8
breast cancer
8
cancer detection
8
sensitivity specificity
8
false positives
8
detection
7
breast tumor
4
tumor detection
4
detection diagnosis
4
diagnosis improved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!