We assessed the feasibility of using deep learning-based image harmonization to improve the reproducibility of radiomics features in abdominal CT scans. In CT imaging, harmonization adjusts images from different institutions to ensure consistency despite variations in scanners and acquisition protocols. This process is essential because such differences can lead to variability in radiomics features, affecting reproducibility and accuracy. Harmonizing images minimizes these inconsistencies, supporting more reliable and clinically applicable results across diverse settings. A pre-trained harmonization algorithm was applied to 63 dual-energy abdominal CT images, which were reconstructed into four different types, and 10 regions of interest (ROIs) were analyzed. From the original 455 radiomics features per ROI, 387 were used after excluding redundant features. Reproducibility was measured using the intraclass correlation coefficient (ICC), with a threshold of ICC ≥ 0.85 indicating acceptable reproducibility. The region-based analysis revealed significant improvements in reproducibility post-harmonization, especially in vessel features, which increased from 14% to 69%. Other regions, including the spleen, kidney, muscle, and liver parenchyma, also saw notable improvements, although air reproducibility slightly decreased from 95% to 94%, impacting only a few features. In patient-based analysis, reproducible features increased from 18% to 65%, with an average of 179 additional reproducible features per patient after harmonization. These results demonstrate that deep learning-based harmonization can significantly enhance the reproducibility of radiomics features in abdominal CT, offering promising potential for advancing radiomics development and its clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/bioengineering11121212 | DOI Listing |
BMC Med Imaging
January 2025
Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Purpose: We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).
Methods: 279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training set (~ 70%) and the test set (~ 30%).
BMC Infect Dis
January 2025
Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia.
Background: Early diagnosis of syphilis is vital for its effective control. This study aimed to develop an Artificial Intelligence (AI) diagnostic model based on radiomics technology to distinguish early syphilis from other clinical skin lesions.
Methods: The study collected 260 images of skin lesions caused by various skin infections, including 115 syphilis and 145 other infection types.
Sci Rep
January 2025
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
This study addresses the limited noninvasive tools for Head and Neck Squamous Cell Carcinoma (HNSCC) progression-free survival (PFS) prediction by identifying Computed Tomography (CT)-based biomarkers for predicting prognosis. A retrospective analysis was conducted on data from 203 HNSCC patients. An ensemble feature selection involving correlation analysis, univariate survival analysis, best-subset selection, and the LASSO-Cox algorithm was used to select functional features, which were then used to build final Cox Proportional Hazards models (CPH).
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Neurology, Tianjin Kanghui Hospital, Tianjin, China.
Introduction: Stroke patients are at high risk of developing cerebral edema, which can have severe consequences. However, there are currently few effective tools for early identification or prediction of this risk. As machine learning (ML) is increasingly used in clinical practice, its effectiveness in predicting cerebral edema risk in stroke patients has been explored.
View Article and Find Full Text PDFMed Image Anal
December 2024
University Lyon, INSA Lyon, CNRS, Inserm, CREATIS UMR5220, U1206, Lyon 69621, France.
Deep learning methods have been widely used for various glioma predictions. However, they are usually task-specific, segmentation-dependent and lack of interpretable biomarkers. How to accurately predict the glioma histological grade and molecular subtypes at the same time and provide reliable imaging biomarkers is still challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!