A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection of Disease Features on Retinal OCT Scans Using RETFound. | LitMetric

Eye diseases such as age-related macular degeneration (AMD) are major causes of irreversible vision loss. Early and accurate detection of these diseases is essential for effective management. Optical coherence tomography (OCT) imaging provides clinicians with in vivo, cross-sectional views of the retina, enabling the identification of key pathological features. However, manual interpretation of OCT scans is labor-intensive and prone to variability, often leading to diagnostic inconsistencies. To address this, we leveraged the RETFound model, a foundation model pretrained on 1.6 million unlabeled retinal OCT images, to automate the classification of key disease signatures on OCT. We finetuned RETFound and compared its performance with the widely used ResNet-50 model, using single-task and multitask modes. The dataset included 1770 labeled B-scans with various disease features, including subretinal fluid (SRF), intraretinal fluid (IRF), drusen, and pigment epithelial detachment (PED). The performance was evaluated using accuracy and AUC-ROC values, which ranged across models from 0.75 to 0.77 and 0.75 to 0.80, respectively. RETFound models display comparable specificity and sensitivity to ResNet-50 models overall, making it also a promising tool for retinal disease diagnosis. These findings suggest that RETFound may offer improved diagnostic accuracy and interpretability for specific tasks, potentially aiding clinicians in more efficient and reliable OCT image analysis.

Download full-text PDF

Source
http://dx.doi.org/10.3390/bioengineering11121186DOI Listing

Publication Analysis

Top Keywords

disease features
8
retinal oct
8
oct scans
8
oct
6
retfound
5
detection disease
4
features retinal
4
scans retfound
4
retfound eye
4
eye diseases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!