Background: , a green microalga, is a rich source of natural astaxanthin and a potent antioxidant with high commercial value. This study investigates the biological characteristics and potential of HB isolated from Hoa Binh, Vietnam, for growth and astaxanthin accumulation using a two-phase culture method.
Methods: HB was cultured in a C/RM medium at 25 °C, and morphological characteristics were examined. NMR spectroscopy was used to determine the structure of the astaxanthin, which was extracted using the Soxhlet method.
Results: After 22 days, the highest cell density (4.96 × 10 cells mL) was achieved under optimized light and ultraviolet conditions. Nutrient deprivation followed by bicarbonate supplementation resulted in a maximal astaxanthin accumulation of 48.8 mg g dry cell weight within two days. The extracted astaxanthin demonstrated potent antioxidant activity (IC: 3.74 mg mL) compared to ascorbic acid (IC: 18.53 µg mL) and exhibited strong acetylcholinesterase inhibition (IC: 297.99 µg mL). It also showed neuroprotective effects against HO and amyloid beta-induced neurotoxicity in C6 cells.
Conclusions: This study highlights HB as a promising source for large-scale astaxanthin production with potential applications in neuroprotective health products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672925 | PMC |
http://dx.doi.org/10.3390/bioengineering11121176 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China.
Revealing the differences of metabolite profiles of H. pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions was the key issues of the present study. To investigate the optimum NaCl and NaNO concentration and the corresponding metabolic characteristic related to the astaxanthin accumulation in H.
View Article and Find Full Text PDFBiotechnol Adv
January 2025
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China. Electronic address:
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam.
Background: , a green microalga, is a rich source of natural astaxanthin and a potent antioxidant with high commercial value. This study investigates the biological characteristics and potential of HB isolated from Hoa Binh, Vietnam, for growth and astaxanthin accumulation using a two-phase culture method.
Methods: HB was cultured in a C/RM medium at 25 °C, and morphological characteristics were examined.
Int J Biol Macromol
December 2024
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:
The present study was to investigate the effect of the astaxanthin high internal phase Pickering emulsion (H-AXT) on DEHP-induced liver lipid metabolism disorder and to demonstrate its possible protective mechanism. We have developed an antioxidant activity emulsion system to deliver astaxanthin into the liver to maximize its ability to protect the liver. In vitro, H-AXT intervention inhibited oxidative stress restored the level of mitochondrial membrane potential to 90 % of that of normal LO2 cells, and alleviated the imbalance of energy metabolism by protecting mitochondrial structure and function.
View Article and Find Full Text PDFMetabolites
December 2024
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
Background: Carotenoids play essential nutritional and physiological roles in aquatic animals. Since aquatic species cannot synthesize carotenoids de novo, they must obtain these compounds from their diet to meet the physiological and adaptive requirements needed in specific aquaculture stages and conditions. Carotenoid supplementation in represents a promising strategy to enhance pigmentation, health, and growth in aquaculture species, particularly in larvae and other early developmental stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!