A novel patient group with chronic pulmonary fibrosis is emerging post COVID-19. To identify patients at risk of developing post-COVID-19 lung fibrosis, we here aimed to identify systemic proteins that overlap with fibrotic markers identified in patients with idiopathic pulmonary fibrosis (IPF) and may predict COVID-19-induced lung fibrosis. Ninety-two proteins were measured in plasma samples from hospitalized patients with moderate and severe COVID-19 in Sweden, before the introduction of the vaccination program, as well as from healthy individuals. These measurements were conducted using proximity extension assay (PEA) technology with a panel including inflammatory and remodeling proteins. Histopathological alterations were evaluated in explanted lung tissue. Connecting to IPF pathology, several proteins including decorin (DCN), tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) and chemokine (C-X-C motif) ligand 13 (CXCL13) were elevated in COVID-19 patients compared to healthy subjects. Moreover, we found incrementing expression of monocyte chemotactic protein-3 (MCP-3) and hepatocyte growth factor (HGF) when comparing moderate to severe COVID-19. Both extracellular matrix- and inflammation-associated proteins were identified as overlapping with pulmonary fibrosis, where we found DCN, TNFRSF12A, CXCL13, CXCL9, MCP-3 and HGF to be of particular interest to follow up on for the prediction of disease severity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727205PMC
http://dx.doi.org/10.3390/biomedicines12122893DOI Listing

Publication Analysis

Top Keywords

lung fibrosis
12
pulmonary fibrosis
12
systemic proteins
8
moderate severe
8
severe covid-19
8
proteins
6
fibrosis
6
covid-19
5
overlapping systemic
4
proteins covid-19
4

Similar Publications

Cardiotoxicity, cardiovascular diseases (CVDs), hypertension, hepatotoxicity, and respiratory problems occurring several months to several years post-chemotherapy and/or radiotherapy are increasingly documented by scientists and clinicians. Anthracyclines, for example, were discovered in the late 1960s to be dose-dependently linked to induced cardiotoxicity, which frequently resulted in cardiomyopathy and heart failure. Most of those changes have also been associated with aging.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions.

View Article and Find Full Text PDF

Chemotherapy-induced cardiotoxicity is a critical issue in cardio-oncology, as cancer treatments often lead to severe cardiovascular complications. Approximately 10% of cancer patients succumb to cardiovascular problems, with lung cancer patients frequently experiencing arrhythmias, cardiac failure, tamponade, and cardiac metastasis. The cardiotoxic effects of anti-cancer treatments manifest at both cellular and tissue levels, causing deformation of cardiomyocytes, leading to contractility issues and fibrosis.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease, characterized by impaired wound repair, tissue remodeling and fibrosis. Immune system may participate in the development and progression of the disease as indicated by altered activity in IPF sufferers. This study investigates the immune response to the BNT162b2 COVID-19 vaccine in patients with IPF compared to healthy controls, with a particular focus on evaluation of antibody responses, interferon-gamma release, cytokine profiling and a broad panel of immune cell subpopulations.

View Article and Find Full Text PDF

Background: Myocardial infarction represents a coronary artery ailment with the highest incidence and fatality rates among cardiovascular conditions. However, effective pharmacological interventions remain elusive. This study seeks to elucidate the molecular mechanisms underlying the effects of on myocardial infarction through network pharmacology and experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!