A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decoding the Genes Orchestrating Egg and Sperm Fusion Reactions and Their Roles in Fertility. | LitMetric

Decoding the Genes Orchestrating Egg and Sperm Fusion Reactions and Their Roles in Fertility.

Biomedicines

Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia.

Published: December 2024

Mammalian fertilization is a complex and highly regulated process that has garnered significant attention, particularly with advancements in assisted reproductive technologies such as in vitro fertilization (IVF). The fusion of egg and sperm involves a sequence of molecular and cellular events, including capacitation, the acrosome reaction, adhesion, and membrane fusion. Critical genetic factors, such as IZUMO1, JUNO (also known as FOLR4), CD9, and several others, have been identified as essential mediators in sperm-egg recognition and membrane fusion. Additionally, glycoproteins such as ZP3 within the zona pellucida are crucial for sperm binding and triggering the acrosome reaction. Recent gene-editing technologies, such as CRISPR/Cas9 and conditional knockout models, have facilitated the functional annotation of genes such as SPAM1 and ADAM family members, further elucidating their roles in capacitation and adhesion. Furthermore, the integration of CRISPR-Cas9 with omics technologies, including transcriptomics, proteomics, and lipidomics, has unlocked new avenues for identifying previously unknown genetic players and pathways involved in fertilization. For instance, transcriptomics can uncover gene expression profiles during gamete maturation, while proteomics identifies key protein interactions critical for processes such as capacitation and the acrosome reaction. Lipidomics adds another dimension by revealing how membrane composition influences gamete fusion. Together, these tools enable the discovery of novel genes, pathways, and molecular mechanisms involved in fertility, providing insights that were previously unattainable. These approaches not only deepen our molecular understanding of fertility mechanisms but also hold promise for refining diagnostic tools and therapeutic interventions for infertility. This review summarizes the current molecular insights into genes orchestrating fertilization and highlights cutting-edge methodologies that propel the field toward novel discoveries. By integrating these findings, this review aims to provide valuable knowledge for clinicians, researchers, and technologists in the field of reproductive biology and assisted reproductive technologies.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biomedicines12122850DOI Listing

Publication Analysis

Top Keywords

acrosome reaction
12
genes orchestrating
8
egg sperm
8
assisted reproductive
8
reproductive technologies
8
capacitation acrosome
8
membrane fusion
8
fusion
5
decoding genes
4
orchestrating egg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!