Background: Obesity, characterized by the secretion of several pro-inflammatory cytokines and hormones, significantly increases the risk of developing breast cancer and is associated with poorer outcomes. Mitochondrial and antioxidant status are crucial in both tumor progression and treatment response.
Methods: This study investigates the impact of an ELIT cocktail (17β-estradiol, leptin, IL-6, and TNFα), which simulates the obesity-related inflammation condition in postmenopausal women, using a 3D culture model. We examined the effects of ELIT exposure on mammosphere formation, oxidative stress and mitochondrial markers, and treatment sensitivity in luminal (T47D, MCF7) and triple-negative (MDA-MB-231) breast cancer cell lines. After that, 3D-derived cells were re-cultured under adherent conditions focusing on the mechanisms leading to dissemination and drug sensitivity.
Results: Our results indicated that ELIT condition significantly increased mammosphere formation in luminal breast cancer cell lines (from 3.26% to 6.38% in T47D cell line and 0.68% to 2.32% in MCF7 cell line) but not in the triple-negative MDA-MB-231 cell line. Further analyses revealed a significant decrease in mitochondrial and antioxidant-related markers, particularly in the T47D cell line, where higher levels of , three-fold increased by ELIT exposure, may play a critical role. Importantly, 3D-derived T47D cells exposed to ELIT showed reduced sensitivity to tamoxifen and paclitaxel, avoiding a 34.2% and 75.1% reduction in viability, respectively. Finally, through in silico studies, we identified specific biomarkers, including , , , and , correlated with poor prognosis in luminal breast cancer.
Conclusions: Taken together, our findings suggest that antioxidant and mitochondrial markers are key factors that reduce treatment sensitivity in obesity-related luminal breast cancer. The identified biomarkers may serve as valuable tools for the prognosis and development of more effective therapies in these patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/biomedicines12122813 | DOI Listing |
Alzheimers Dement
December 2024
B.S.A. College of Engineering and Technology, Mathura, Uttar Pradesh, India.
Background: Cognitive dysfunction emerges as a manifestation of reduced estrogen levels following ovariectomy in an individual. However, the conventional use of estrogen replacement therapy could increase the risk of breast cancer and thromboembolism. Icariin is a natural compound that has been reported to be a neuroprotective agent against dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.
Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.
View Article and Find Full Text PDFBioconjug Chem
January 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.
View Article and Find Full Text PDFANZ J Surg
December 2024
Northern Sydney Cancer Centre, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia.
Curr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!