Despite attempts at improving survival by employing novel therapies, progression in glioma is nearly universal. Precision biomarkers are critical to advancing outcomes; however, biomarkers for glioma are currently unknown. Most data on which the field can draw for biomarker identification comprise tissue-based analysis requiring the biospecimen to be removed from the tumor. Non-invasive specimen-based precision biomarkers are needed. Mucins are captured in tissue and blood and are increasingly studied in cancer, with several studies exploring their role as biomarkers to detect disease and monitor disease progression. CA125, also known as MUC16, is implemented as a biomarker in the clinic for ovarian cancer. Similarly, several mucins are membrane-bound, facilitating downstream signaling associated with tumor resistance and hallmarks of cancer. Evidence supports mucin expression in glioma cells with relationships to tumor detection, progression, resistance, and patient outcomes. The differential expression of mucins across tissues and organs could also provide a means of attributing signals measured in serum or plasma. In this review, we compiled existing research on mucins as candidate precision biomarkers in glioma, focusing on promising mucins in relationship to glioma and leading to a framework for mucin analysis in biospecimens as well as avenues for validation as data evolve.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biomedicines12122806DOI Listing

Publication Analysis

Top Keywords

precision biomarkers
16
biomarkers glioma
12
mucins
6
biomarkers
6
glioma
6
mucins precision
4
glioma emerging
4
emerging evidence
4
evidence potential
4
potential biospecimen
4

Similar Publications

Background: Benign and malignant breast tumors differ in their microvasculature morphology and distribution. Histologic biomarkers of malignant breast tumors are also correlated with the microvasculature. There is a lack of imaging technology for evaluating the microvasculature.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a major neurodegenerative disorder with significant environmental factors, including diet and lifestyle, influencing its onset and progression. Although previous studies have suggested that certain diets may reduce the incidence of AD, the underlying mechanisms remain unclear.

Method: In this post-hoc analysis of a randomized crossover study of 20 elderly adults, we investigated the effects of a modified Mediterranean ketogenic diet (MMKD) on the plasma lipidome in the context of AD biomarkers, analyzing 784 lipid species across 47 classes using a targeted lipidomics platform.

View Article and Find Full Text PDF

Clinical decision-making is driven by multimodal data, including clinical notes and pathological characteristics. Artificial intelligence approaches that can effectively integrate multimodal data hold significant promise in advancing clinical care. However, the scarcity of well-annotated multimodal datasets in clinical settings has hindered the development of useful models.

View Article and Find Full Text PDF

Parkinson's disease (PD) and insomnia are prevalent neurological disorders, with emerging evidence implicating tryptophan (TRP) metabolism in their pathogenesis. However, the precise mechanisms by which TRP metabolism contributes to these conditions remain insufficiently elucidated. This study explores shared tryptophan metabolism-related genes (TMRGs) and molecular mechanisms underlying PD and insomnia, aiming to provide insights into their shared pathogenesis.

View Article and Find Full Text PDF

Targeting the Hippo and Rap1 signaling pathways: the anti-proliferative effects of curcumin in colorectal cancer cell lines.

Med Oncol

January 2025

Department of Medical Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.

CRC has the third-highest cancer incidence and death. Many human cancers, including colorectal cancer, are connected to abnormal signaling pathway gene expression. Many human malignancies include Hippo and Rap1 signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!