Cardiovascular disease (CVD) and ischemic stroke (IS) are the primary causes of mortality worldwide. Hypercholesterolemia has been recognized as an independent risk factor for CVD and IS. Numerous clinical trials have unequivocally demonstrated that reducing levels of low-density lipoprotein cholesterol (LDL-C) significantly mitigates the risk of both cardiac and cerebral vascular events, thereby enhancing patient prognosis. Consequently, LDL-C reduction remains a pivotal therapeutic strategy for CVD and IS. However, despite intensive statin therapy, a significant proportion of high-risk hypercholesterolemic patients fail to achieve sufficient reductions in LDL-C levels. In response to this challenge, an inhibitor targeting proprotein convertase subtilisin-kexin type 9 (PCSK9) has been developed as a therapeutic intervention for hyperlipidemia. Numerous randomized controlled trials (RCTs) have conclusively demonstrated that the combination of PCSK9 inhibitors and statins significantly enhances prognosis not only in patients with CVD, but also in those afflicted with symptomatic intracranial artery stenosis (sICAS). PCSK9 inhibitors significantly reduce LDL-C levels by binding to the PCSK9 molecule and preventing its interaction with LDLRs. This prevents degradation of the receptor and increases uptake of LDL-C, thereby decreasing its concentration in blood. Besides significantly reducing LDL-C levels, PCSK9 inhibitors also demonstrate anti-inflammatory and anti-atherosclerotic properties while promoting plaque stabilization and inhibiting platelet aggregation and thrombosis. This article aims to provide a comprehensive review based on the relevant literature regarding the evolving understanding of pleiotropic effects associated with PCSK9 inhibitors, particularly focusing on their impact on the cardiovascular system and central nervous system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726846 | PMC |
http://dx.doi.org/10.3390/biomedicines12122729 | DOI Listing |
Lipids
January 2025
Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, Canada.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors represent a novel approach for reducing cholesterol and, accordingly, the burden of atherosclerosis. However, limited data are available regarding the possible effects of PCSK9 inhibitors on atherosclerotic plaque. To evaluate the efficacy of PCSK9 inhibitors in reducing carotid plaque progression in individuals with high-risk carotid atherosclerotic disease.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is mainly secreted by the liver, and plays a crucial role in lipid metabolism disorder. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) can regulate lipid metabolism through various pathways, including reducing visceral fat accumulation, modulating serum lipoprotein levels and alleviating hepatic steatosis. However, the specific regulatory mechanisms remain unclear.
View Article and Find Full Text PDFAtherosclerosis
December 2024
Department of Internal Medicine, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands. Electronic address:
Background And Aims: This study investigated how patients experience and which outcomes matter to patients and healthcare professionals in the decision to initiate proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) as add-on lipid-lowering treatment (LLT).
Methods: We performed a mixed methods study: very high-risk patients qualifying for PCSK9i reimbursement were interviewed about their experiences and preferences. Subsequently, patients using PCSK9i completed an anonymous online survey about their experiences.
Background: Intracranial atherosclerotic stenosis is a leading cause of ischemic stroke and recurrent events due to plaque instability. High-resolution magnetic resonance imaging identifies plaque enhancement as a key marker of instability. This study evaluated the efficacy of combined high-intensity statins and proprotein convertase subtilisin/kexin type 9 inhibitors in plaque stabilization.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Cukurova University, Faculty of Medicine, Division of Endocrinology, Adana, Turkey.
Introduction: Diabetes mellitus is associated with an increased risk of atherosclerosis related to dyslipidemia. Although the terms hyperlipidemia and Diabetes Mellitus [DM] or diabetic dyslipidemia are interrelated to each other, these two conditions have some differences.
Aim: This study aimed to highlight possible mechanisms of hyperlipidemia and/or dyslipidemia in diabetic patients, which can be treated with available and newer hypolipidemic drugs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!