Obesity and type 2 diabetes mellitus (T2DM) have been increasing in prevalence, causing complications and strain on our healthcare systems. Notably, gut dysbiosis is implicated as a contributing factor in obesity, T2DM, and chronic inflammatory diseases. A pharmacology exists which modulates the incretin pathway to improve glucose control; this has proven to be beneficial in patients with obesity and T2DM. However, it is unclear how the gut microbiome may regulate insulin resistance, glucose control, and metabolic health. In this narrative review, we aim to discuss how the gut microbiome can modulate incretin pathways and related mechanisms to control glucose. To investigate this, Google Scholar and PubMed databases were searched using key terms and phrases related to the microbiome and its effects on insulin and glucose control. Emerging research has shown that several bacteria, such as and MN-Gup, have GLP-1-agonistic properties capable of reducing hyperglycemia. While more human research is needed to prove clinical benefit and identify long-term implications on health, the usage of pre-, pro-, and postbiotics has the potential to improve glucose control.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biomedicines12122719DOI Listing

Publication Analysis

Top Keywords

glucose control
20
obesity t2dm
8
improve glucose
8
gut microbiome
8
glucose
6
control
6
gut
4
gut microbiome's
4
microbiome's influence
4
influence incretins
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;, Beijing, China.

Background: Individuals with type 2 diabetes mellitus (T2DM) face an increased risk of dementia. Recent discoveries indicate that SGLT2 inhibitors, a newer class of anti-diabetic medication, exhibit beneficial metabolic effects beyond glucose control, offering a potential avenue for mitigating the risk of Alzheimer's disease (AD). However, limited evidence exists regarding whether the use of SGLT2 inhibitors effectively reduces the risk of AD.

View Article and Find Full Text PDF

Background: Despite some advances in treatment, a cure for Alzheimer's disease (AD) remains elusive. Disease hallmarks include heightened neuroinflammation and oxidative stress, associated with progressive decline in mobility and cognitive functions. Natural compounds provide a valuable reservoir of novel bioactive substances with therapeutic potential, fewer side effects, and increased affordability.

View Article and Find Full Text PDF

Background: Although cognitive decline is a trait related to aging, some individuals are resilient to the aging process, defined as SuperAgers. Studying the neural underpinnings of SuperAgers may improve the understanding of AD pathology. In this study, our aim was to analyze amyloid and neurodegeneration imaging biomarkers in SuperAgers.

View Article and Find Full Text PDF

The TIRAP protein is an adaptor protein in TLR signaling which links TLR2 and TLR4 to the adaptor protein Myd88. The transcriptomic profiles of zebrafish larvae from a , and mutant and the corresponding wild type controls under unchallenged developmental conditions revealed a specific involvement of in calcium homeostasis and myosin regulation. Metabolomic profiling showed that the mutation results in lower glucose levels, whereas a mutation leads to higher glucose levels.

View Article and Find Full Text PDF

Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!