Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background/objectives: Recent advancements in artificial intelligence (AI) have spurred interest in developing computer-assisted analysis for imaging examinations. However, the lack of high-quality datasets remains a significant bottleneck. Labeling instructions are critical for improving dataset quality but are often lacking. This study aimed to establish a liver MRI segmentation protocol and assess its impact on annotation quality and inter-reader agreement.
Methods: This retrospective study included 20 patients with chronic liver disease. Manual liver segmentations were performed by a radiologist in training and a radiology technician on T2-weighted imaging (wi) and T1wi at the portal venous phase. Based on the inter-reader discrepancies identified after the first segmentation round, a segmentation protocol was established, guiding the second round of segmentation, resulting in a total of 160 segmentations. The Dice Similarity Coefficient (DSC) assessed inter-reader agreement pre- and post-protocol, with a Wilcoxon signed-rank test for per-volume analysis and an Aligned-Rank Transform (ART) for repeated measures analyses of variance (ANOVA) for per-slice analysis. Slice selection at extreme cranial or caudal liver positions was evaluated using the McNemar test.
Results: The per-volume DSC significantly increased after protocol implementation for both T2wi ( < 0.001) and T1wi ( = 0.03). Per-slice DSC also improved significantly for both T2wi and T1wi ( < 0.001). The protocol reduced the number of liver segmentations with a non-annotated slice on T1wi ( = 0.04), but the change was not significant on T2wi ( = 0.16).
Conclusions: Establishing a liver MRI segmentation protocol improves annotation robustness and reproducibility, paving the way for advanced computer-assisted analysis. Moreover, segmentation protocols could be extended to other organs and lesions and incorporated into guidelines, thereby expanding the potential applications of AI in daily clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/diagnostics14242785 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!