In Vitro Evaluation of Probiotic Activities and Anti-Obesity Effects of EF-1 in Mice Fed a High-Fat Diet.

Foods

Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Published: December 2024

This research sought to assess the anti-obesity potential of EF-1. An extensive and robust in vitro methodology confirmed EF-1's significant potential in combating obesity, probably due to its excellent gastrointestinal tract adaptability, cholesterol-lowering property, bile salt hydrolase activity, α-glucosidase inhibition, and fatty acid absorption ability. Moreover, EF-1 exhibited antimicrobial activity against several pathogenic strains, lacked hemolytic activity, and was sensitive to all antibiotics tested. To further investigate EF-1's anti-obesity properties in vivo, a high-fat diet (HFD) was used to induce obesity in C57BL/6J mice. Treatment with EF-1 (2 × 10 CFU/day) mitigated HFD-induced body weight gain, reduced adipose tissue weight, and preserved liver function. EF-1 also ameliorated obesity-associated microbiota imbalances, such as decreasing the / ratio and boosting the levels of bacteria (, , , , and _NK4A136_group), which are responsible for the generation of short-chain fatty acids (SCFAs). Concurrently, the levels of total SCFAs were elevated. Thus, following comprehensive safety and efficacy assessments in vitro and in vivo, our results demonstrate that EF-1 inhibits HFD-induced obesity through the regulation of gut microbiota and enhancing SCFA production. This strain appears to be a highly promising candidate for anti-obesity therapeutics or functional foods.

Download full-text PDF

Source
http://dx.doi.org/10.3390/foods13244095DOI Listing

Publication Analysis

Top Keywords

high-fat diet
8
ef-1
6
vitro evaluation
4
evaluation probiotic
4
probiotic activities
4
anti-obesity
4
activities anti-obesity
4
anti-obesity effects
4
effects ef-1
4
ef-1 mice
4

Similar Publications

Objective: The objective of this study is to analyze and identify the main chemical components and blood-absorbed components of Xuantu Granules and predict their pharmacological substance basis and mechanism in the treatment of DKD.

Methods: A DKD rat model was established by feeding SD rats a high-fat and high-sugar diet and administering intraperitoneal injections of streptozotocin (STZ). The therapeutic effect of Xuantu granules was evaluated.

View Article and Find Full Text PDF

The rising pandemic of obesity has received significant attention. Yet, more safe and effective targeted strategies must be used to mitigate its impact on individual health and the global disease burden. While the health benefits of resistant starch (RS) are well-documented, the role of RT-90 (a phosphate-modified tapioca RS containing 90.

View Article and Find Full Text PDF

The rock oyster, Saccostrea cucullata, native to the Indo-Pacific region, is renowned for its nutritional and therapeutic benefits. A sulfated glycosaminoglycan (SCP-2) with β-(1→3)-GlcNSp and α-(1→4)-GlcAp as recurring units isolated from S. cucullata.

View Article and Find Full Text PDF

Insulin resistance and diabetes are associated with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) conditions, which are distinguished by metabolic dysfunction, oxidative stress and inflammation. Sirtuin 1 (SIRT1), a NAD-dependent deacetylase, is fundamental in regulating metabolic pathways, reducing inflammation, and improving antioxidant defenses. This is the first study to investigate the effects of SRT1720, a SIRT1 activator, in diabetic rats on a high-fat diet.

View Article and Find Full Text PDF

Background/aims: Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!