With growing environmental and health concerns surrounding meat consumption, meat analogs have emerged as sustainable and health-conscious alternatives. A major challenge in developing these products is replicating the fibrous, elastic texture of meat, where microbial transglutaminase (MTG) has shown significant potential. MTG catalyzes protein cross-linking, enhancing the structural integrity of meat analogs. This study aimed to evaluate the effects of MTG concentrations (0%, 0.5%, and 1%) and incubation times (0, 1.5, and 3 h) on the quality and rheological properties of meat analogs. Analogs were tested for pH, protein content, dry matter, fat retention, and thermal loss. Textural properties, including hardness, cohesiveness, gumminess, springiness, and chewiness, were determined using texture profile analysis, while leakage parameters were evaluated through water and fat content tests. Results revealed that higher MTG concentrations and longer incubation times improved protein content (14.34% to 15.55%), dry matter (29.61% to 32.53%), and reduced total leakage (1.262% to 0.634%). Textural properties, including hardness (57.08 N to 83.14 N), gumminess (19.40 N to 30.00 N), and chewiness (17.60 N × mm to 29.58 N × mm), also significantly improved with increasing MTG levels. Thermal loss ranged from 98.37% to 100.9%, showing enhanced retention at higher MTG concentrations. These results support the role of MTG in creating meat analogs with improved meat-like textures, achieved through enhanced protein cross-linking and moisture retention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675576 | PMC |
http://dx.doi.org/10.3390/foods13244085 | DOI Listing |
Food Sci Anim Resour
January 2025
Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
Meat analogs are a burgeoning industry, with plant-based meat analogs, insect-based meat analogs, algae-based meat analogs, mycoprotein-based meat analogs, and cell-based meat analogs. However, despite the industry's growth potential, market expansion faces hurdles due to taste and quality disparities compared to traditional meats. The composition and characteristics of meat analogs currently available in the market are analyzed in this study to inform the development of future products in this sector.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea.
Meat analogs or meat alternatives mimic conventional meat by using non-meat ingredients. There are several reasons for the rising interest in meat alternatives, e.g.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
The expansion of alternative food industries, including cultured meat, is often promoted as a strategy to reduce environmental pollution, particularly greenhouse gas emissions. However, comprehensive data on the environmental impacts of these industries remains limited. This study examines the environmental impacts of traditional meat and meat substitute production, highlighting their respective advantages and disadvantages.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
This study was conducted to investigate the recent research trends of alternative protein foods being developed to replace traditional livestock foods and thus determine the current state of the technology and the potential for industrialization. The results of this study showed that the technology related to cultured meat has not yet reached industrialization. However, serum-free media development, technologies to improve culture efficiency, and technologies to improve taste and flavor are being researched.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea.
Production of alternative proteins is crucial for the development of future protein resources. This study explored the creation of sustainable animal resources by combining extrusion molding and three-dimensional (3D) printing technologies. Extrusion effectively organizes vegetable proteins at high temperatures and pressures to replicate meat-like textures, and high-moisture extrusion successfully mimics the fiber structure of conventional meat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!