Hyperlipidemia poses significant risks for cardiovascular diseases, with emerging evidence underscoring the critical role of gut microbiota in metabolic regulation. This study explores CAAS36, a probiotic strain with promising cholesterol-lowering capabilities, assessing its impact on hyperlipidemic hamsters. Utilizing 1H NMR-based metabolomics and 16S rRNA gene sequencing, we observed that CAAS36 treatment not only altered metabolic pathways but also reshaped gut microbiota composition. Notably, the treatment restored the balance between Firmicutes and Bacteroidetes and significantly increased the abundance of propionate-producing Muribaculaceae. Metabolically, CAAS36 administration led to the normalization of key lipid markers, including reductions in total cholesterol, LDL-C, and triglycerides (29.9%, 29.4% and 32.6%), while enhancing the protective HDL-C levels. These effects were accompanied by significant increases in beneficial metabolites such as propionate and succinate, which are known for their roles in preventing metabolic disorders. These findings highlight the dual regulatory effects of CAAS36 on the metabolic profile and gut microbiota, suggesting a substantial potential for this probiotic in the management of hyperlipidemia and possibly other metabolic diseases. Future applications may include its use as a natural therapeutic agent in clinical settings, aiming to reduce reliance on conventional pharmaceuticals and their associated side effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675396 | PMC |
http://dx.doi.org/10.3390/foods13244058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!