A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Interactions Between Soy Protein Isolate and Three Folate Molecules: Effect on the Stabilization, Degradation, and Oxidization of Folates and Protein. | LitMetric

This study selected three approved folate sources-folic acid (FA), L-5-methyltetrahydrofolate (MTFA), and calcium 5-methyltetrahydrofolate (CMTFA)-to explore their interaction mechanisms with soy protein isolate (SPI) through spectrofluorometric analysis and molecular docking simulations. We investigated how these interactions influence the structural and physicochemical stability of folates and SPI. Three folates spontaneously bound to SPI, forming complexes, resulting in a decrease of approximately 30 kJ·mol in Gibbs free energy and an association constant (K) of 10 L·mol. The thermodynamic parameters and molecular docking study revealed the unique binding mechanisms of FA and MTFA with SPI. FA's planar pteridine ring and conjugated double bonds facilitate hydrophobic interactions, whereas MTFA's reduced ring structure and additional polar groups strengthen hydrogen bonding. Although the formation of SPI-folate complexes did not result in substantial alterations to the SPI structure, their binding has the potential to enhance both the physical and thermal stability of the protein by stabilizing its conformation. Notably, compared with free FA, the FA-SPI complexes significantly enhanced FA's stability, exhibiting 71.1 ± 1.2% stability under light conditions after 9 days and 63.2 ± 2.6% stability in the dark after 60 days. In contrast, no similar effect was observed for MTFA. This discrepancy can be ascribed to the distinct degradation pathways of the Fa and MTFA molecules. This study offers both theoretical and experimental insights into the development of folate-loaded delivery systems utilizing SPI as a matrix.

Download full-text PDF

Source
http://dx.doi.org/10.3390/foods13244033DOI Listing

Publication Analysis

Top Keywords

soy protein
8
protein isolate
8
molecular docking
8
spi
6
stability
5
comparison interactions
4
interactions soy
4
protein
4
isolate three
4
three folate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!