Dynamic Chromatin Accessibility and Gene Expression Regulation During Maize Leaf Development.

Genes (Basel)

National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.

Published: December 2024

Background/objectives: Chromatin accessibility is closely associated with transcriptional regulation during maize () leaf development. However, its precise role in controlling gene expression at different developmental stages remains poorly understood. This study aimed to investigate the dynamics of chromatin accessibility and its influence on genome-wide gene expression during the BBCH_11, BBCH_13, and BBCH_17 stages of maize leaf development.

Methods: Maize leaves were collected at the BBCH_11, BBCH_13, and BBCH_17 developmental stages, and chromatin accessibility was assessed using ATAC-seq. RNA-seq was performed to profile gene expression. Integrated analysis of ATAC-seq and RNA-seq data was conducted to elucidate the relationship between chromatin accessibility and transcriptional regulation.

Results: A total of 46,808, 38,242, and 41,084 accessible chromatin regions (ACRs) were identified at the BBCH_11, BBCH_13, and BBCH_17 stages, respectively, with 23.4%, 12.2%, and 21.9% of these regions located near transcription start sites (TSSs). Integrated analyses revealed that both the number and intensity of ACRs significantly influence gene expression levels. Motif analysis identified key transcription factors associated with leaf development and potential transcriptional repressors among genes, showing divergent regulation patterns in ATAC-seq and RNA-seq datasets.

Conclusions: These findings demonstrate that chromatin accessibility plays a crucial role in regulating the spatial and temporal expression of key genes during maize leaf development by modulating transcription factor binding. This study provides novel insights into the regulatory mechanisms underlying maize leaf development, contributing to a deeper understanding of chromatin-mediated gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675475PMC
http://dx.doi.org/10.3390/genes15121630DOI Listing

Publication Analysis

Top Keywords

chromatin accessibility
24
gene expression
24
maize leaf
20
leaf development
20
bbch_11 bbch_13
12
bbch_13 bbch_17
12
atac-seq rna-seq
12
regulation maize
8
developmental stages
8
bbch_17 stages
8

Similar Publications

Burn injuries often leave behind a "stasis zone", a region of tissue critically important for determining both the severity of the injury and the potential for recovery. To understand the intricate cellular and epigenetic changes occurring within this critical zone, we utilized single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to profile over 31,500 cells from both healthy rat skin and the stasis zone at nine different time points after a burn injury. This comprehensive approach revealed 26 distinct cell types and the dynamic shifts in the proportions of these cell types over time.

View Article and Find Full Text PDF

Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.

View Article and Find Full Text PDF

Cis-regulatory elements (CREs) control gene expression and are dynamic in their structure and function, reflecting changes in the composition of diverse effector proteins over time. However, methods for measuring the organization of effector proteins at CREs across the genome are limited, hampering efforts to connect CRE structure to their function in cell fate and disease. Here we developed PRINT, a computational method that identifies footprints of DNA-protein interactions from bulk and single-cell chromatin accessibility data across multiple scales of protein size.

View Article and Find Full Text PDF

Unveiling the guardians of the genome: The dynamic role of histones in DNA organization and disease.

Adv Protein Chem Struct Biol

January 2025

CsrDD Lab, Department of Microbiology, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pimpri, Pune, India. Electronic address:

Histones are positively charged proteins found in the chromatin of eukaryotic cells. They regulate gene expression and are required for the organization and packaging of DNA within the nucleus. Histones are extremely conserved, allowing for transcription, replication, and repair.

View Article and Find Full Text PDF

Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation.

Sci Adv

January 2025

Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!