Genetic Research and Plant Breeding 2.0.

Genes (Basel)

Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea.

Published: December 2024

Recent advances in next-generation sequencing technologies have significantly reduced sequencing costs, resulting in the creation of large-scale genomic data that can be utilized for plant breeding [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675221PMC
http://dx.doi.org/10.3390/genes15121604DOI Listing

Publication Analysis

Top Keywords

plant breeding
8
genetic plant
4
breeding advances
4
advances next-generation
4
next-generation sequencing
4
sequencing technologies
4
technologies reduced
4
reduced sequencing
4
sequencing costs
4
costs creation
4

Similar Publications

The role of Exo70s in plant defense against pathogens and insect pests and their application for crop breeding.

Mol Breed

February 2025

National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.

Plant diseases caused by pathogens and pests lead to crop losses, posing a threat to global food security. The secretory pathway is an integral component of plant defense. The exocyst complex regulates the final step of the secretory pathway and is thus essential for secretory defense.

View Article and Find Full Text PDF

Unlabelled: Chickpea (. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production.

View Article and Find Full Text PDF

Climate change and recurrent droughts challenge wheat production and yield, necessitating careful selection and plant breeding research. "Value for Cultivation and Use" experiments are crucial for assessing genetic gains and providing information about potential pathways to alleviate production losses under specific environmental conditions. The goal of the study was to compare the grain yield and quality characteristics of 46 registered bread wheat cultivars in 5 out of 7 agro-ecological regions of Türkiye between 2016-2017 and 2017-2018.

View Article and Find Full Text PDF

Two leucine-rich repeat receptor-like kinases initiate herbivory defense responses in tea plants.

Hortic Res

January 2025

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China.

Leucine-rich repeat receptor-like kinases (LRR-RLKs) have emerged as key regulators of herbivory perception and subsequent defense initiation. While their functions in grass plants have been gradually elucidated, the roles of herbivory-related LRR-RLKs in woody plants remain largely unknown. In this study, we mined the genomic and transcriptomic data of tea plants () and identified a total of 307 CsLRR-RLK members.

View Article and Find Full Text PDF

In the rapid climate change scenario and subsequent rainfall patterns, drought has emerged as a bottleneck for crop production across crops, especially in rainfed rice. Drought significantly affects the development and production of most modern rice cultivars. Thus, recent breeding efforts have aimed to integrate drought tolerance traits in existing rice varieties through conventional and molecular approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!