Background: Sulfur (S) is a vital element for the normal growth and development of plants, performing crucial biological functions in various life processes.

Methods: This study investigated thirteen S utilization efficiency (SUE)-related traits at the seedling stage of wheat using a recombinant inbred line (RIL) population. The quantitative trait loci (QTLs) were mapped by genetic mapping. Thirteen S utilization efficiency-related traits were investigated under two hydroponic culture trials with low S (0.1S, T1), moderate S (0.5S, T2), and high S (1.5S, T3) levels, using the wheat RILs.

Results: A total of 170 QTLs for the thirteen traits in different treatment environments were identified. Among them, 89, 103, and 101 QTLs were found in T1, T2, and T3, respectively. A total of 63 QTLs were found in the multiple treatment environments, the other 107 QTLs only being detected in a single treatment environment. Among them, thirteen relatively high-frequency QTLs (RHF-QTLs) and eleven QTL clusters were found. Five (, , , , and ) and six (, , , , , and ) RHF-QTLs were identified in QTL clusters C3 and C10, respectively.

Conclusion: These thirteen RHF-QTLs and eleven QTL clusters are expected to apply to the molecular marker-assisted selection (MAS) of wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727847PMC
http://dx.doi.org/10.3390/genes15121550DOI Listing

Publication Analysis

Top Keywords

qtl clusters
12
quantitative trait
8
trait loci
8
utilization efficiency-related
8
efficiency-related traits
8
traits seedling
8
seedling stage
8
stage wheat
8
thirteen utilization
8
treatment environments
8

Similar Publications

Identification and quantitative trait locus mapping of Tartary buckwheat pre-harvest sprouting.

J Sci Food Agric

January 2025

Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China.

Background: Tartary buckwheat (Fagopyrum tartaricum) is particularly vulnerable to pre-harvest sprouting (PHS) due to its extended flowering and fruiting cycle, especially during periods of prolonged rainfall. This susceptibility has significant adverse effects on yield, quality and post-harvest processing. In this study, a recombinant inbred lines (RILs) population (XJ-RILs) was developed from a cross between the PHS-susceptible Tartary buckwheat variety 'Xiaomiqiao' (female parent) and the highly PHS-resistant variety 'Jinqiaomai 2' (male parent).

View Article and Find Full Text PDF

Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.

View Article and Find Full Text PDF

Genome-wide association study of rice (Oryza sativa L.) inflorescence architecture.

Plant Sci

January 2025

Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.

Rice yield strongly depends on panicle size and architecture but the genetics underlying these traits and their coordination with environmental cues through various signaling pathways have remained elusive. A genome-wide association study (GWAS) was performed to pinpoint the underlying genetic determinants for rice panicle architecture by analyzing 20 panicle-related traits using a data set consisting of 44,100 SNPs. We defined QTL windows around significant SNPs by the rate of LD decay for each chromosome and used these windows to identify putative candidate genes associated with the trait.

View Article and Find Full Text PDF

Genetic dissection of flag leaf morphology traits and fine mapping of a novel QTL (Qflw.sxau-6BL) in bread wheat (Triticum aestivum L.).

Theor Appl Genet

January 2025

Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Linfen, China.

Total 60-QRC for FLM traits were detected by meta-genomics analysis, nine major and stable QTL identified by DH population and validated, and a novel QTL  Qflw.sxau-6BL was fine mapped. The flag leaf is an "ideotypic" morphological trait providing photosynthetic assimilates in wheat.

View Article and Find Full Text PDF

Background: Sulfur (S) is a vital element for the normal growth and development of plants, performing crucial biological functions in various life processes.

Methods: This study investigated thirteen S utilization efficiency (SUE)-related traits at the seedling stage of wheat using a recombinant inbred line (RIL) population. The quantitative trait loci (QTLs) were mapped by genetic mapping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!