Cucumber ( L.) is a crucial vegetable crop, requiring significant nitrogen fertilizer inputs. However, excessive nitrogen application not only impairs growth but also poses severe environmental risks. Thus, enhancing nitrogen use efficiency (NUE) in cucumber is imperative. For the identification of genes associated with NUE in cucumber, roots of high NUE and low NUE lines were analyzed under high nitrogen conditions. Using transcriptome sequencing through WGCNA, a total of 15,180 genes were categorized into 35 co-expression modules, with 5 modules being highly correlated with NUE. Based on differential expression within the five modules and the results of GO and KEGG enrichment analyses, 25 genes were identified as potentially related to NUE. Among these, (GLR22), (GLR35), (NRT1.1), and (UPS2) were homologous to genes in known to directly participate in NUE related process. These four genes were chosen as key genes for further analysis. qRT-PCR analysis revealed that and were more active during the early stages of the high nitrogen treatment in the high NUE line. Conversely, and were more active in the low NUE line. Using transcriptomic analysis, a frameshift INDEL mutation was observed in in the low NUE line, which impacted the compactness of the protein structure, potentially altering its function. Analysis of protein interactions of these four key genes predicted some potential interaction networks. This research offers critical insights into the genetic factors influencing NUE in cucumber, presenting potential targets for genetic modification or breeding programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675882PMC
http://dx.doi.org/10.3390/genes15121505DOI Listing

Publication Analysis

Top Keywords

key genes
12
nue cucumber
12
low nue
12
nue
11
genes
8
nitrogen efficiency
8
high nue
8
high nitrogen
8
nitrogen
6
cucumber
5

Similar Publications

Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.

View Article and Find Full Text PDF

Synergistic defecation effects of subsp. BL-99 and fructooligosaccharide by modulating gut microbiota.

Front Immunol

January 2025

Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.

Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.

View Article and Find Full Text PDF

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

Integrated single-cell and bulk transcriptome analysis of R-loop score-based signature with regard to immune microenvironment, lipid metabolism and prognosis in HCC.

Front Immunol

January 2025

National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.

View Article and Find Full Text PDF

Background: Colon adenocarcinoma (COAD) is a malignancy with a high mortality rate and complex biological characteristics and heterogeneity, which poses challenges for clinical treatment. Anoikis is a type of programmed cell death that occurs when cells lose their attachment to the extracellular matrix (ECM), and it plays a crucial role in tumor metastasis. However, the specific biological link between anoikis and COAD, as well as its mechanisms in tumor progression, remains unclear, making it a potential new direction for therapeutic strategy research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!