A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Temperature and Random Forces in Phase Transformation of Multi-Stable Systems. | LitMetric

Effects of Temperature and Random Forces in Phase Transformation of Multi-Stable Systems.

Entropy (Basel)

Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy.

Published: December 2024

Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition. Temperature can further introduce novel effects, modifying energy barriers and transition rates. The study of the effects of fluctuations requires the use of a framework that naturally incorporates the interaction of the system with the environment, such as Statistical Mechanics to account for the role of temperature. In the case of complex phenomena induced by disorder, advanced methods such as the replica method (to derive analytical formulas) or refined numerical methods based, for instance, on Monte Carlo techniques, may be needed. In particular, employing models that incorporate the main features of the physical system under investigation and allow for analytical results that can be compared with experimental data is of paramount importance for describing many realistic physical phenomena, which are often studied while neglecting the critical effect of randomness or by utilizing numerical techniques. Additionally, it is fundamental to efficiently derive the macroscopic material behavior from microscale properties, rather than relying solely on phenomenological approaches. In this perspective, we focus on a paradigmatic model that includes both nearest-neighbor interactions with multi-stable (elastic) energy terms and linear long-range interactions, capable of ensuring the presence of an ordered phase. Specifically, to study the effect of environmental noise on the control of the system, we include random fluctuation in external forces. We numerically analyze, on a small-size system, how the interplay of temperature and disorder can significantly alter the system's phase transition behavior. Moreover, by mapping the model onto a modified version of the Random Field Ising Model, we utilize the replica method approach in the thermodynamic limit to justify the numerical results through analytical insights.

Download full-text PDF

Source
http://dx.doi.org/10.3390/e26121109DOI Listing

Publication Analysis

Top Keywords

phase transformation
8
alter system's
8
phase transition
8
replica method
8
phase
5
effects temperature
4
temperature random
4
random forces
4
forces phase
4
transformation multi-stable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!