A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Near-Wall Methodology for Large-Eddy Simulation Based on Dynamic Hybrid RANS-LES. | LitMetric

A Near-Wall Methodology for Large-Eddy Simulation Based on Dynamic Hybrid RANS-LES.

Entropy (Basel)

Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.

Published: December 2024

Attempts to mitigate the computational cost of fully resolved large-eddy simulation (LES) in the near-wall region include both the hybrid Reynolds-averaged Navier-Stokes/LES (HRL) and wall-modeled LES (WMLES) approaches. This paper presents an LES wall treatment method that combines key attributes of the two, in which the boundary layer mesh is sized in the streamwise and spanwise directions comparable to WMLES, and the wall-normal mesh is comparable to a RANS simulation without wall functions. A mixing length model is used to prescribe an eddy viscosity in the near-wall region, with the mixing length scale limited based on local mesh size. The RANS and LES regions are smoothly blended using the dynamic hybrid RANS-LES (DHRL) framework. The results are presented for the turbulent channel flow at two Reynolds numbers, and comparison to the DNS results shows that the mean and fluctuating quantities are reasonably well predicted with no apparent log-layer mismatch. A detailed near-wall meshing strategy for the proposed method is presented, and estimates indicate that it can be implemented with approximately twice the number of grid points as traditional WMLES, while avoiding the difficulties associated with analytical or numerical wall functions and modified wall boundary conditions.

Download full-text PDF

Source
http://dx.doi.org/10.3390/e26121095DOI Listing

Publication Analysis

Top Keywords

large-eddy simulation
8
dynamic hybrid
8
hybrid rans-les
8
near-wall region
8
wall functions
8
mixing length
8
near-wall
4
near-wall methodology
4
methodology large-eddy
4
simulation based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!