Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Correctly identifying influential nodes in a complex network and implementing targeted protection measures can significantly enhance the overall security of the network. Currently, indicators such as degree centrality, closeness centrality, betweenness centrality, H-index, and K-shell are commonly used to measure node influence. Although these indicators can identify critical nodes to some extent, they often consider node attributes from a narrow perspective and have certain limitations. Therefore, evaluating the importance of nodes using most existing indicators remains incomplete. In this paper, we propose the multi-attribute CRITIC-TOPSIS network decision indicator, or MCTNDI, which integrates closeness centrality, betweenness centrality, H-index, and network constraint coefficients to identify critical nodes in a network. This indicator combines information from multiple perspectives, including local neighborhood importance, network topological location, path centrality, and node mutual information, thereby solving the issue of the one-sided perspective of single indicators and providing a more comprehensive measure of node importance. Additionally, MCTNDI is validated through the analysis of several real-world networks, including the Contiguous USA network, Dolphins network, USAir97 network, and Tech-routers-rf network. The validation is conducted from four aspects: the results of simulated network attacks, the distribution of node importance, the monotonicity of rankings, and the similarity of indicators, illustrating MCTNDI's effectiveness in real networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/e26121075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!