Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate multimodal seismicity by analyzing it as the result of multiple seismic sources. We examine three case studies: the Redoubt and Spurr regions in Alaska, where volcanic and subduction-related seismicity occur, and the Kii Peninsula in Japan, where shallow and deep earthquakes are clearly separated. To understand this phenomenon, we perform spatial, temporal, and magnitude analyses. Our application of non-extensive statistical mechanics shows that multimodal models provide a significantly better fit than unimodal ones. We identify patterns in the distributions of time between events and distances between events using multimodal Tsallis -gamma distributions. In addition, we use the multimodal Sotolongo-Costa model to analyze the magnitude distribution, which effectively captures the complex interactions that may explain the observed lack of fractality in multimodal seismicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/e26121040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!