Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a form of visual input, bodily expressions can be maintained and manipulated in visual working memory (VWM) over a short period of time. While the prefrontal cortex (PFC) plays an indispensable role in top-down control, it remains largely unclear whether this region also modulates the VWM storage of bodily expressions during a delay period. Therefore, the two primary goals of this study were to examine whether the emotional bodies would elicit heightened brain activity among areas such as the PFC and extrastriate body area (EBA) and whether the emotional effects subsequently modulate the functional connectivity patterns for active maintenance during delay periods. During functional magnetic resonance imaging (fMRI) scanning, participants performed a delayed-response task in which they were instructed to view and maintain a body stimulus in working memory before emotion categorization (happiness, anger, and neutral). If processing happy and angry bodies consume increased cognitive demands, stronger PFC activation and its functional connectivity with perceptual areas would be observed. Results based on univariate and multivariate analyses conducted on the data collected during stimulus presentation revealed an enhanced processing of the left PFC and left EBA. Importantly, subsequent functional connectivity analyses performed on delayed-period data using a psychophysiological interaction model indicated that functional connectivity between the PFC and EBA increases for happy and angry bodies compared to neutral bodies. The emotion-modulated coupling between the PFC and EBA during maintenance deepens our understanding of the functional organization underlying the VWM processing of bodily information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/brainsci14121172 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!